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Screening designs are attractive for assessing the relative impact of a large number of factors on a

response of interest. Experimenters often prefer quantitative factors with three levels over two-level factors

because having three levels allows for some assessment of curvature in the factor–response relationship.

Yet, the most familiar screening designs limit each factor to only two levels. We propose a new class of

designs that have three levels, provide estimates of main effects that are unbiased by any second-order

effect, require only one more than twice as many runs as there are factors, and avoid confounding of

any pair of second-order effects. Moreover, for designs having six factors or more, our designs allow for

the efficient estimation of the full quadratic model in any three factors. In this respect, our designs may

render follow-up experiments unnecessary in many situations, thereby increasing the efficiency of the entire

experimentation process. We also provide an algorithm for design construction.
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Introduction

E
XPERIMENTERS frequently use screening designs
during the early stages of an investigation to

identify active effects in the presence of effect spar-
sity. These designs often target large main (linear)
effects, although there is no need to limit the search
to first-order terms. As Montgomery (2009) writes,
“A major use of fractional factorials is in screening
experiments—experiments in which many factors are
considered and the objective is to identify those fac-
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tors (if any) that have large effects.” A quantita-
tive factor can be critically important over the ex-
perimental range due to its first-order main effect or
to potential second-order effects in the form of two-
factor interactions and pure-quadratic effects. In this
paper, we introduce a new class of designs for screen-
ing quantitative factors in the presence of active first-
and second-order effects.

Traditionally, resolution III and IV fractional fac-
torial designs have been widely used for early-stage
screening experimentation. An undesirable property
of resolution III fractional-factorial screening designs
(Box and Hunter, 1961) is that they completely con-
found the main effects of the factors with one or more
two-factor interactions. If a confounded effect is ac-
tive, the experimenter is left with substantial am-
biguity. Resolving this ambiguity generally requires
the experimenter to perform additional experimental
runs. If there is strong reason to suspect the presence
of a few active two-factor interactions, a resolution
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IV fractional factorial design is a standard alterna-
tive. However, these designs require twice as many
runs as the resolution III design and again lead, fre-
quently, to substantial ambiguity. If an interaction
contrast is identified as active, the experimenter has
no way to definitively identify which of the interac-
tions in the set of confounded two-way interactions
are active. Again, follow-up work is required to iden-
tify the active effects.

Another limitation of resolution III and IV de-
signs is that they have no capability for capturing
curvature due to pure-quadratic effects. Of course, it
is traditional to add center runs to two-level screen-
ing designs to get a global assessment of curvature.
Still, these runs do not allow for separate estimation
of the quadratic effects of each factor. So an indica-
tion of curvature in the analysis leads to still more
ambiguity that can only be resolved with additional
runs.

Our new class of three-level screening designs has
the structure illustrated in Table 1. We use xi,j to
denote the setting of the jth factor for the ith run.
For m factors, there are 2m + 1 runs based on m
fold-over pairs and an overall center point. Each run
(excluding the centerpoint) has exactly one factor
level at its center point and all others at the ex-
tremes. As described in the next section, the val-
ues of the ±1 entries in the odd-numbered runs of

TABLE 1. General Design Structure for m Factors

Factor levels
Foldover Run

pair (i) xi,1 xi,2 xi,3 · · · xi,m

1 1 0 ±1 ±1 · · · ±1
2 0 ∓1 ∓1 · · · ∓1

2 3 ±1 0 ±1 · · · ±1
4 ∓1 0 ∓1 · · · ∓1

3 5 ±1 ±1 0 · · · ±1
6 ∓1 ∓1 0 · · · ∓1

...
...

...
...

...
. . .

...

m 2m − 1 ±1 ±1 ±1 · · · 0
2m ∓1 ∓1 ∓1 · · · 0

Centerpoint 2m + 1 0 0 0 · · · 0

Table 1 are determined using optimal design; the
even-numbered values (∓1) result from the fold-over
operation. These designs have the following desirable
properties:

1. The number of required runs is only one more
than twice the number of factors.

2. Unlike resolution III designs, main effects are
completely independent of two-factor interac-
tions. As a result, estimates of main effects are
not biased by the presence of active two-factor
interactions, regardless of whether the interac-
tions are included in the model.

3. Unlike resolution IV designs, two-factor inter-
actions are not completely confounded with
other two-factor interactions, although they
may be correlated.

4. Unlike resolution III, IV, and V designs with
added center points, all quadratic effects are
estimable in models comprised of any number
of linear and quadratic main-effects terms.

5. Quadratic effects are orthogonal to main effects
and not completely confounded (though corre-
lated) with interaction effects.

6. With 6 through (at least) 12 factors, the de-
signs are capable of estimating all possible full
quadratic models involving three or fewer fac-
tors with very high levels of statistical effi-
ciency.

We use the term “definitive screening” because of
points one through five above. These are small de-
signs that, unlike resolution III and IV factorial de-
signs, permit the unambiguous identification of ac-
tive main effects, active quadratic effects, and, in the
presence of a moderate level of effect sparsity, active
two-way interactions.

In our view, another practical advantage of the
designs we propose is the explicit use of three levels.
It has been our experience that engineers and scien-
tists often feel some discomfort using two-level de-
signs for two reasons. First, statisticians advise them
to experiment boldly by choosing a substantial inter-
val between low and high values of each factor. But
their scientific training inculcates the notion that the
functional relationship between independent and de-
pendent variables is usually nonlinear, particularly
over a wide range. This leads to some cognitive dis-
sonance in considering the use of two-level designs.
Second, even in the early stages of a study, investiga-
tors frequently have an opinion regarding the “best”
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levels of each factor for optimizing a response. Their
experimental region then brackets these levels. If the
response values are comparable at either end of the
range but different in the middle, the concern is that
a two-level design might screen out an important fac-
tor. Adding center runs to a two-level design is a very
popular procedure because it permits a test for cur-
vature. However, in the event that substantial cur-
vature is present, the investigator cannot determine
which factor(s) caused it and will have to do follow-
up experimentation to resolve the ambiguity. Our de-
signs avoid this by making it possible to uniquely
identify the source of any curvature.

The methodology proposed here is different from,
but related to, several prior contributions. For exam-
ple, Cheng and Wu (2001) develop a novel approach
for factor screening and response surface estimation
using fractions of 3m experiments for n = 27 and by
using fractions of mixed-level orthogonal arrays for
n = 18 and n = 36. Designs produced by Cheng and
Wu are related, in that they employ three levels and
can provide estimates of first- and second-order ef-
fects. The designs proposed here differ in that they
(1) generally allow for substantially fewer runs for
the same number of factors and (2) do not require
orthogonality between main effects.

The approach of Tsai et al. (2000) (TGM) is also
related. They consider the design and analysis of
three-level designs using a design strategy that con-
siders the efficiencies of low-level projections. We
note that this seemingly disparate approach did lead
to nearly the same arrangement as ours in one in-
stance. Design 1 of TGM’s Table 5 is essentially
identical to our design for six factors, discussed be-
low, with the exception that TGM require two center
points to our one.

In Jones and Nachtsheim (2011), the authors con-
sidered the construction of designs that minimize the
squared norm of the alias matrix subject to con-
straints on the D-efficiency of the design. They found
that designs similar to those discussed here were
sometimes produced using the proposed constrained
optimal-design approach.

The proposed designs, which, as noted, require
2m + 1 runs, occupy a new center ground between
two-level resolution III factorials, which typically re-
quire between m + 1 and 2m runs, and small re-
sponse surface designs, which require considerably
larger numbers of runs. We refer the reader to Hart-
ley (1959), Westlake (1965), Draper (1985), Draper

and Lin (1990), and Angelopoulos et al. (2009) for
the development of small response surface designs.
The book by Box and Draper (1987) provides a nice
introduction to small composite designs.

An outline of the paper is as follows. We de-
scribe the structure of our designs using a simple
illustrative example in the next section. In succeed-
ing sections, we (1) present an algorithm for gen-
erating these designs; (2) evaluate the aliasing, effi-
ciency, power, and projection properties of proposed
designs; (3) provide a simulated example with sug-
gestions for statistical analysis; and, finally, (4) pro-
vide conclusions and suggestions for further work. A
pseudo-code description of the algorithm is provided
in Appendix 1, and a JMP scripting language (JSL)
code for creating any design in this class of designs
can be found at http://www.asq.org/pub/jqt/. Let
y = (y1, . . . , y2m+1)′ denote the response vector; let
xjk denote the jkth two-factor interaction column,
the ith entry of which is xi,jxi,k; and let xjj denote
the jth pure-quadratic effect column, the ith entry
of which is x2

i,j . Throughout, we assume that the re-
sponse yi follows the normal theory linear model,

yi = β0 +
m∑

j=1

βjxi,j +
m−1∑
j=1

m∑
k=j+1

βjkxi,jxi,k

+
m∑

j=1

βjjx
2
i,j + εi, i = 1, . . . , 2m + 1 (1)

where the parameters β0, . . . , βmm are unknown con-
stants (of which many are zero by the sparsity of ef-
fects assumption), and the {εi} are iid N(0, σ2). In
matrix form, we have y = Xβ + ε, where X is the
(2m + 1 × (m + 2)(m + 1)/2) design matrix. The
least-squares estimate of a parameter βj is denoted
β̂j .

Design Structure: An Example

For two-level designs, one way to make two-factor
interactions independent of main effects involves mir-
roring each row in the design by another that re-
verses the signs of all the entries in that row. Table
2 shows an example design (produced by our design
algorithm, as described in the next section) with six
factors and 13 runs. Note that each even-numbered
row is obtained by multiplying each value of the pre-
vious row by −1. The last row is a center run.

Another pattern in Table 2 is apparent by observ-
ing the location of the zero entries. The first pair of
runs has zeros in the first column and the second pair
of runs has zeros in the second column. This pattern
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TABLE 2. Three-Level Definitive Screening Design for

Six Factors with a Simulated Response Vector

Run (i) xi,1 xi,2 xi,3 xi,4 xi,5 xi,6 yi

1 0 1 −1 −1 −1 −1 21.04
2 0 −1 1 1 1 1 10.48
3 1 0 −1 1 1 −1 17.89
4 −1 0 1 −1 −1 1 10.07
5 −1 −1 0 1 −1 −1 7.74
6 1 1 0 −1 1 1 21.01
7 −1 1 1 0 1 −1 16.53
8 1 −1 −1 0 −1 1 20.38
9 1 −1 1 −1 0 −1 8.62

10 −1 1 −1 1 0 1 7.80
11 1 1 1 1 −1 0 23.56
12 −1 −1 −1 −1 1 0 15.24
13 0 0 0 0 0 0 19.91

repeats so that each column has a contiguous pair
of zero entries in the first 12 rows. Adding the cen-
ter run in the last row results in a design that can
fit a model including an intercept term, all the main
effects, and all the pure-quadratic effects of each fac-
tor.

The columns of this design are orthogonal to each
other. Because of the mirroring in pairs of runs, the
main effects are all independent of any active two-
factor interactions. However, the two-factor interac-
tions are correlated among themselves and with the
pure-quadratic effects. The section on design prop-
erties below considers the correlation structure and
the power of tests when both pure-quadratic effects
and two-factor interactions are active.

Compared with the 12-run Plackett–Burman de-
sign (Plackett and Burman, 1946) with one addi-
tional center run, the design in Table 2 has a relative
D-efficiency of 85.5% for the model consisting of all
first-order main effects. Both designs are orthogonal
for the main effects. The relative variance of each
main effect in our design (Var(β̂i)/σ2) is 1/10, which
compares with 1/12 for the Plackett–Burman design.
The ability to estimate pure-quadratic effects and the
independence of the main effects and the two-factor
interactions compensates for the loss of efficiency in
fitting the main effects model. Note that each main
effect in the Plackett–Burman design is correlated—

or partially aliased—with several two-factor interac-
tions.

Design Construction

The patterns illustrated in the previous section are
common to each member of the class of designs. Con-
struction of these designs is accomplished through
the use of a numerical algorithm that maximizes the
determinant of the information matrix of the main ef-
fects model while enforcing this structure. The start-
ing design imposes zeros in all the required places,
and these entries are not allowed to change during
the course of the algorithm. The other entries in the
odd-numbered rows of the starting design are cho-
sen randomly on the interval [−1, 1]. The even num-
bered rows of the starting design are obtained from
the odd-numbered rows by multiplying each value by
−1. (Because the starting values are chosen from the
interval [−1, 1], the endpoints of the interval (±1)
will not appear in the starting design. These interior
points are moved to the extremes during the course of
the algorithm. One could also choose starting points
by restricting all nonzero values to ±1; however, we
have found that choosing starting values from the
continuous interval helps in our efforts to avoid local
maxima, as described below.)

The starting design is improved using a variant
of the coordinate exchange algorithm of Meyer and
Nachtsheim (1995). For each nonzero entry in every
row of the design matrix, the algorithm evaluates the
effect of changing that entry to 1 or −1 while simul-
taneously changing the corresponding entry in the
mirroring row to −1 or 1, respectively. If the deter-
minant of the information matrix improves for either
or both of these operations, then the current design
is updated for the given row and the mirroring row
for the better of the two possible exchanges. After
the first pass through each entry in the design ma-
trix, the algorithm makes a second pass through ev-
ery nonzero value. If any value of the design changes
in the second pass, then the algorithm performs an-
other pass. This process continues until there are no
changes in any pass through the design or when a
maximum iteration limit is reached. The resulting
design, having been obtained from one random start-
ing design, may not be globally optimal, so multiple
random starting designs are used in an effort to avoid
local maxima.

Note that, to create a randomized design, the rows
of the design generated by the algorithm should be
randomly shuffled.
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FIGURE 1. Designs for m = 4 Through m = 12 Factors.

Design Properties

Designs for 4 through 12 factors are displayed in
Figure 1. These were the best designs found by our al-
gorithm using 10,000 random starting designs. With
the exception of m = 12, all designs having even
numbers of factors are orthogonal for main effects, in
the sense that all main-effects estimates are uncor-
related and the levels sum to zero. Despite consid-
erable additional computational search (in the form
of 100,000 random starts), we have not been able
to find an orthogonal design for m = 12. Designs
for m = 4 through m = 30 can be downloaded from
http://www.asq.org/pub/jqt/. In this section, we ex-

plore the aliasing, efficiency, power, and projective
properties of the proposed designs.

Aliasing and Correlation Structure

Assume that the “true” model can be well approx-
imated by full quadratic model (1), and partition this
model as follows:

y = X1β1 + X2β2 + ε, (2)

where X1 is the (2m + 1 × m) design matrix cor-
responding to the m linear main-effects terms and
X2 is the (2m + 1 × 1 + m(m + 1)/2) design matrix
corresponding to all other terms in (1). If the analyst
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FIGURE 2. Plots of Absolute Correlations Between Quadratic Effect Pairs and Between Interaction and Quadratic Effect

Pairs for Four through 40 Factors. Solid dots give r c
qq,st(m) from (6); open dots give r c

qq,ss(m) from (4).

employs the linear main-effects model y = X1β1 + ε

to estimate β1 using least squares, it is well known
that the expected value of the resulting estimate is

E(β̂1) = β1 + Aβ2, (3)

where the (m × 1 + m(m + 1)/2) alias matrix A is
given by A = (X′

1X1)−1X1′X2. It is straightforward
to show that A = 0 for all designs defined by Table
1. As a result, for all designs in this class,

1. Main effects are independent of two-factor in-
teractions.

2. Main effects are independent of quadratic ef-
fects.

In addition, for all of the designs that we have con-
structed, no individual two-factor interaction is com-
pletely confounded with any other individual two-
factor interaction or quadratic effect. Moreover, the
designs for m = 4, m = 6, m = 8, and m = 10 are
orthogonal main-effects plans, in the sense that all
main effects are pairwise uncorrelated and the levels
sum to zero. Although two-factor interactions are not
completely confounded with other two-factor inter-
actions or with quadratic effects, some correlation is
present. In this section, we examine the extent of the
correlation between (1) pairs of quadratic effects, (2)
between quadratic and interaction effect pairs, and

(3) between pairs of interactions. There are at least
two ways that correlations between pairs of model
effects are commonly examined. The first is to con-
sider the correlations between the two columns in
the design matrix that correspond to the pair of ef-
fects under consideration. This is an omnibus mea-
sure that provides a general indication of the extent
of confounding between the two effects. The second
is to consider the actual correlation between the es-
timated effects. The latter can only be obtained in
the context of a specified model. In this subsection,
we consider both types of correlation in turn.

Correlations Between Design Columns

We show in Appendix 2 that, for the proposed
class of designs, the correlation between the two
columns in the design matrix that correspond to
pure-quadratic effects of a factor q and a factor
s �= q for a design involving m ≥ 4 factors, denoted
rc
qq,ss(m), is

rc
qq,ss(m) =

1
3
− 1

m − 1
. (4)

This correlation is increasing in m and approaches
+1/3 as m → ∞. Values for four through 40 factors
are shown in Figure 2. We note that, for m = 4
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factors, the correlation is zero. It turns out that our
algorithm produces a graeco-latin square in this case.

Characterizing correlations between quadratic ef-
fects columns and interaction columns is more com-
plex. If the number of factors is even and the two-
factor interaction columns sum to zero, the correla-
tions between any quadratic effect column and any
two-factor interaction column has a simple closed
form. Although we have observed that interaction
columns frequently do sum to zero for m even (and
all do so when our designs are orthogonal for main
effects), we cannot guarantee that this condition will
be met by all interaction columns in the globally op-
timal designs for the class. However, when the inter-
action columns do sum to zero and the number of fac-
tors is even, the correlation assumes one of three val-
ues, depending on whether or not the two terms have
a factor in common. Letting rc

qq,st(m) denote the cor-
relation between a quadratic effect column in factor
q and an interaction effect column involving factors s
and t, we show in Appendix 2 that, for q �= s, q �= t,
s �= t, m ≥ 4 and even, and

∑
i xi,qs =

∑
i xi,st = 0,

rc
qq,qs(m) = 0 (5)

rc
qq,st(m) = ±

√
2m + 1

3(m − 1)(m − 2)
. (6)

The absolute value of this correlation decreases in m,
approaching zero as m → ∞. Absolute values of the
correlation for even numbers of factors ranging from
m = 4 through m = 40 are shown in Figure 3. We
have not been able to develop general closed-form ex-
pressions for the correlation if either m is odd or the
optimal design does not produce interaction columns
that sum to zero. Note that, when the above con-
ditions are met, the quadratic effect column of any
factor is uncorrelated with any two-factor interaction
column involving that factor. Assuming that models
exhibit effect heredity, this is another beneficial prop-
erty of this design class.

Averages and maximums of absolute column cor-
relations |rc

qq,qs|, |rc
qq,st|, and |rc

st,uv|, for m = 4
through m = 20, are shown in Table 3. We first note
from an examination of columns 2 and 3 that the cor-
relations between quadratic columns and any inter-
action column involving the quadratic factor are, in
general, quite small, and are zero for m = 4, 6, 8, and
10. The entries in columns 4 and 5 show that, as ex-
pected, the maximum correlation between quadratic

FIGURE 3. Absolute Values of Column Correlations of Terms Through Second Order for the Six-Factor, Three-Level

Screening Design in Table 2.
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TABLE 3. Average and Maximum Absolute Correlations Between Quadratic Effects Columns and

an Interaction Column that Involves the Quadratic Effect Factor (|r c
qq,qs| and |r c

qq,qs|max); Between Quadratic

Effects Columns and Interaction Columns that Do Not Involve the Quadratic Effect Factor (|r c
qq,st| and |r c

qq,st|max);

and Between Interaction Columns (|r c
st,uv| and |r c

st,uv|max)

m |rc
qq,qs| |rc

qq,qs|max |rc
qq,st| |rc

qq,st|max |rc
st,uv| |rc

st,uv|max

4 0.000 0.000 0.707 0.707 0.400 0.500
5 0.156 0.156 0.518 0.726 0.312 0.774
6 0.000 0.000 0.465 0.465 0.357 0.500
7 0.083 0.083 0.397 0.497 0.276 0.644
8 0.000 0.000 0.367 0.367 0.222 0.667
9 0.054 0.054 0.331 0.392 0.243 0.740

10 0.000 0.000 0.312 0.312 0.250 0.750
11 0.040 0.120 0.289 0.425 0.214 0.848
12 0.010 0.067 0.274 0.347 0.221 0.610
13 0.029 0.029 0.259 0.291 0.206 0.831
14 0.015 0.052 0.247 0.304 0.201 0.706
15 0.025 0.071 0.237 0.315 0.189 0.883
16 0.013 0.042 0.228 0.273 0.170 0.890
17 0.024 0.058 0.219 0.282 0.179 0.874
18 0.016 0.071 0.211 0.290 0.173 0.901
19 0.020 0.082 0.205 0.297 0.173 0.882
20 0.013 0.060 0.199 0.264 0.170 0.797

TABLE 4. Average and Maximum Absolute Correlations for Full Quadratic Models Involving any Three Active

Factors, Between Estimated Quadratic Effects and an Estimated Interaction that Involves the Quadratic Effect Factor

(|r c
qq,qs| and |r c

qq,qs|max); Between Estimated Quadratic Effects and an Estimated Interaction Effect that Do Not Involve

the Quadratic Effect Factor (|r c
qq,st| and |r c

qq,st|max); and Between Estimated Interaction Effects (|r c
st,uv| and |r c

st,uv|max)

m |re
qq,ss| |re

qq,ss|max |re
qq,qs| |re

qq,qs|max |re
qq,st| |re

qq,st|max |re
st,uv| |re

st,uv|max

6 0.087 0.087 0.128 0.128 0.483 0.483 0.405 0.405
7 0.091 0.091 0.129 0.129 0.369 0.369 0.038 0.038
8 0.089 0.089 0.121 0.121 0.411 0.411 0.181 0.181
9 0.085 0.085 0.065 0.152 0.334 0.396 0.144 0.298

10 0.080 0.080 0.024 0.024 0.314 0.314 0.134 0.134
11 0.075 0.075 0.087 0.087 0.284 0.284 0.022 0.022
12 0.071 0.071 0.083 0.083 0.304 0.304 0.113 0.113
13 0.067 0.067 0.055 0.096 0.266 0.297 0.080 0.179
14 0.063 0.063 0.042 0.063 0.287 0.295 0.285 0.318
15 0.059 0.059 0.072 0.112 0.275 0.282 0.138 0.189
16 0.056 0.056 0.060 0.076 0.234 0.243 0.063 0.086
17 0.053 0.053 0.064 0.096 0.239 0.247 0.061 0.154
18 0.051 0.051 0.062 0.086 0.226 0.230 0.079 0.088
19 0.049 0.049 0.090 0.151 0.251 0.269 0.242 0.309
20 0.046 0.046 0.058 0.058 0.220 0.220 0.064 0.064
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effects and two-factor interaction columns that do
not involve the quadratic factor can be large for small
m, but tend to zero with increasing m. Note that the
entries in columns 4 and 5 for m = 4, m = 6, m = 8,
and m = 10 correspond to the results shown in Fig-
ure 2, as given by (6). As shown in column 6 of Table
3, the average absolute correlation between pairs of
interaction columns is generally about 1/3 or less for
five or more factors and is decreasing with the num-
ber of factors. These values are similar to (though
less than) the average absolute correlations between
interaction and quadratic-effect pairs in column 4. In
general, the magnitude of the average absolute cor-
relations shown in Table 3 suggests that the designs
will provide reasonable power for distinguishing be-
tween these effects pairs. We explore this in greater
detail in our discussion of statistical power below.

Correlations Between Estimated Effects

Determination of the actual correlations between
estimated effects can only be accomplished in the
context of a specific model. To give some idea as
to the level of correlation between estimated second-
order terms that might be encountered in practice,
we computed the correlations for the full second-
order model, for all possible three-factor models in-
volving 6 through 20 factors. Results are shown in
Table 4. Our notation for correlations here is the
same as above for column correlations, except that
we use re to denote a correlation between estimated
effects in place of rc. Column 2 of Table 4 indicates
that the average absolute correlations between pairs
of estimated quadratic effects (|re

qq,ss| values) are all
less than 0.10 and are generally decreasing with m.
Note that re is decreasing with m for this particu-
lar class of models, even though rc, as given by (4),
increases monotonically to 1/3. This decrease under-
scores the point made earlier—that the column cor-
relations and the estimated effects correlations are
different measures of confounding. Average correla-
tions between quadratic effects and an interaction in-
volving the quadratic factor (column 4 |re

qq,qs| values)
are all less than or equal to 0.129 and are also gener-
ally decreasing in m. Correlations between estimated
quadratic effects and interactions not having a fac-
tor in common (Column 6 |re

qq,st| values) range from
0.483 for m = 6 to 0.220 for m = 20. Here we see that
the estimated effects correlations agree (to perhaps a
surprising extent) with the column correlations given
by (6). Finally, average absolute correlations between
any pairs of estimated interaction effects (|re

st,uv| val-
ues) are shown in Column 8. These values range from

0.405 for m = 6 to 0.022 for m = 11 without any ap-
parent trend. One conclusion we draw from the table
is that the highest correlations appear to occur be-
tween estimated quadratic effects and an estimated
interaction effect that does not involve the quadratic
factor. Nonetheless, for m ≥ 10, all average correla-
tions are less than 1/3.

Design Efficiency

The D-efficiency of any design d1, relative to a
nonsingular design d2, is given by

De(d1, d2) =
( |X(d1)′X(d1)|
|X(d2)′X(d2)|

)1/p

, (7)

where X(di) is the design matrix of design di, for
i = 1, 2, and p is the number of terms in the model.
The model of interest here consists of the inter-
cept term and all m linear effects. The (absolute)
D-efficiency of any design d is given by De(d, dD),
where dD is the D-optimal design. In order to obtain
the D-efficiencies of the proposed designs, it is neces-
sary to obtain the D-optimal main effects design for
n = 2m + 1. For consistency and comparability, we
found the D-optimal designs for n = 2m and aug-
mented this design with a single center point. When
m is even, orthogonal main effects plans for n = 2m,
such as Plackett–Burman designs, are readily avail-
able and are known to be D-optimal. For m odd, we
constructed D-optimal designs of size n = 2m us-
ing the coordinate exchange algorithm in the JMP
statistical software system. The resulting relative D-
efficiencies of our designs, obtained via (7), are pro-
vided in column 2 of Table 5.

TABLE 5. Relative Efficiencies of the 3-Level

Screening Designs and Average Increases in the Ratio of

Coefficient Standard Errors when Compared with

Standard Orthogonal Alternatives

Average percentage
Number of D-efficiency increase in

factors (%) standard errors

6 85.5 9.5
7 84.1 14.3
8 88.8 6.9
9 86.8 10.6

10 90.9 5.4
11 89.1 8.1
12 89.8 7.6
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In every case, the relative D-efficiency of the three-
level screening design exceeded 85%, with values
typically near 90%. As we expected, the three-level
screening design gives up some efficiency for the esti-
mation of the main effects. In compensation for this
slightly lowered efficiency, the proposed designs al-
low for the estimation of pure-quadratic effects of
each factor as well as the main effects. Moreover, the
main effects estimates are not biased by the presence
of any active two-factor interaction. This is in con-
trast with the D-optimal designs for the main effects
models, whose main-effect estimates can be substan-
tially biased in the presence of real two-factor inter-
actions.

Another measure of the design efficiency is given
by the ratio of the standard errors of each of the co-
efficients for each of the two design alternatives. The
averages of these ratios is provided in column 3 of Ta-
ble 5. The values indicate that standard errors will
be 5%–15% larger for the proposed designs than for
the D-optimal main-effects plans. In general, when
both designs are orthogonal, the percentage increase
in this ratio is 100(

√
1/(1 − m−1) − 1)%, which ap-

proaches zero as m increases. We would again main-
tain that this is a very small price to pay for the many
advantages associated with the proposed plans.

Power

As mentioned before, the use of designs in this
class leads to nonzero correlation between interaction
pairs and between interaction and quadratic effects
pairs. In an effort to assess the impact that these
correlations can have on model selection, we deter-
mined the power of these designs for rejecting the
types of hypotheses that are frequently tested during
the analysis phase of a study. In particular, we con-
sidered the six hypotheses listed in Table 6. Hypoth-
esis 1 concerns linear main effects. Hypotheses 2–3
represent situations where the analyst might first fit
first-order effects and then wonder if a second-order
term might be present. Hypotheses 4–6 are intended
to represent situations where only a few effects are
active and the analyst now wishes to determine which
effects from a full second-order model involving those
active effects are present. Each hypothesis represents
an entire family of tests, depending on the specific
factors i, j involved and the number of factors, m.
We provide the average power for all such tests with
|β|/σ = 1, 2, and 3 and for designs with even num-
bers of factors ranging from m = 6 to m = 12.

Average power for rejecting hypotheses 1–6 are

TABLE 6. Hypotheses Tested in Power Study

Hypothesis Hypothesis Other terms in
number tested full model

1 H0: βi = 0 Constant term
2 H0: βii = 0 Constant and all

linear effects
3 H0: βij = 0 Constant and all

linear effects
4 H0: βi = 0 Constant, βj , βii, βjj ,

and βij

5 H0: βii = 0 Constant, βi, βj , βjj ,
and βij

6 H0: βij = 0 Constant, βi, βj , βii,
and βjj

shown for the proposed three-level screening designs
in columns 3 through 5 of Table 7. We make the
following observations:

1. Power increases with the size of the design,
2m + 1, and the size of the true regression co-
efficient, β. This is as expected.

2. Tests for linear effects have uniformly high
power.

3. The power of tests for interaction effects is
slightly less than that for linear main effects.

4. The least power is associated with tests for
quadratic terms. This power is less than about
0.32 when |β|/σ = 1; however, if |β|/σ ≥ 2,
power is quite good, exceeding 0.68 in all cases.

5. In general, we can expect the power for tests
of linear main effects and interactions to ap-
proach 1.0 as m increases for a given value of
|β|/σ. This is not the case, however, for tests of
quadratic effects. Each column designates ex-
actly three runs at the center point of the fac-
tor range, and this does not increase with m.
As a result, the extra sum of squares due to
a quadratic effect in the numerator of the F -
test will be approximately constant as m in-
creases. The power of the tests for quadratic
effects will increase only marginally as the de-
nominator degrees of freedom increases with m.
This pattern is clearly in evidence in the third
column of Table 7, corresponding to |β|/σ = 1.
As the number of factors increases from m = 6
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TABLE 7. Average Power of Tests For Hypotheses 1–6

3-Level screening designs Orthogonal designs

Effect m |β|/σ = 1 |β|/σ = 2 |β|/σ = 3 |β|/σ = 1 |β|/σ = 2 |β|/σ = 3

Hypothesis 1 6 0.821 0.999 1 0.883 1 1
(one linear effect) 8 0.937 1 1 0.962 1 1

10 0.980 1 1 0.989 1 1
12 0.994 1 1 0.997 1 1

Hypothesis 2 6 0.236 0.683 0.949 Aliased Aliased Aliased
(one quadratic effect) 8 0.275 0.769 0.980 Aliased Aliased Aliased

10 0.300 0.814 0.989 Aliased Aliased Aliased
12 0.317 0.840 0.993 Aliased Aliased Aliased

Hypothesis 3 6 0.623 0.993 1 0.548 0.982 1
(one interaction effect) 8 0.843 1 1 Aliased Aliased Aliased

10 0.944 1 1 0.794 0.999 1
12 0.982 1 1 0.993 1 1

Hypothesis 4 6 0.774 0.999 1 N.E. N.E. N.E.
(one linear effect 8 0.925 1 1 N.E. N.E. N.E.

in two-factor full 10 0.977 1 1 N.E. N.E. N.E.
quadratic model) 12 0.993 1 1 N.E. N.E. N.E.

Hypothesis 5 6 0.257 0.734 0.970 N.E. N.E. N.E.
(one quadratic effect 8 0.292 0.802 0.987 N.E. N.E. N.E.

in two-factor full 10 0.310 0.832 0.992 N.E. N.E. N.E.
quadratic model) 12 0.322 0.848 0.994 N.E. N.E. N.E.

Hypothesis 6 6 0.681 0.998 1 N.E. N.E. N.E.
(one interaction effect 8 0.883 1 1 N.E. N.E. N.E.

in two-factor full 10 0.962 1 1 N.E. N.E. N.E.
quadratic model) 12 0.988 1 1 N.E. N.E. N.E.

NOTE: “Aliased” indicates that the test could not be conducted due to direct aliasing of the effect with
other second-order effects; “N.E.” indicates that the full second-order model could not be estimated and the
test could therefore not be conducted.

to m = 12, the power for the test of a lin-
ear main effect increases from 0.821 to 0.994,
while the power for the test of an interaction
increases from 0.623 to 0.982. In contrast, the
power of the test for a quadratic effect increases
only marginally, from 0.236 to 0.317. In sum-
mary, as m increases, we can anticipate that the
power for tests for quadratic effects will con-
tinue to increase, but only very slightly beyond
the numbers reported in Table 7 for m = 12.

We also compared the power of the proposed de-

signs with that of standard two-level alternatives. For
m = 6, m = 10, and m = 12, we chose Plackett–
Burman designs with one added center point. For
m = 8, we chose a resolution IV factorial design,
also with one added center point. Power calculations
for these designs are shown in columns 6 through 8
of Table 7. In examining columns 6 through 8, the
first thing we notice is that many of the tests can-
not be conducted due to estimability or aliasing is-
sues. Consider, for example, hypothesis 2. For the
orthogonal designs, the test for a specific quadratic
effect (H0: βii = 0) cannot be conducted because all
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of the quadratic effects are mutually aliased. Simi-
larly, hypothesis 3 (H0: βij = 0) cannot be tested
for m = 8. The resolution IV fractional factorial de-
sign used in this case aliases each two-factor inter-
action with three other two-factor interactions. For
the same reason, none of hypotheses 4 through 6—
where full second-order models are employed for spe-
cific pairs of active factors—can be tested for the or-
thogonal designs. For those cases where hypotheses
can be tested and comparisons between the orthog-
onal designs and the proposed designs can be made,
we have two observations:

1. For testing linear effects (hypothesis 1), use of
the three-level designs leads to a slight decrease
in power for |β|/σ = 1 relative to the orthogo-
nal designs. The losses range from about 0.003
(m = 12) to about 0.062 (m = 6). It is easy
to show that this difference approaches zero as
the number of factors grows. For |β|/σ = 2 or
3, the power values are nearly identical.

2. Somewhat surprisingly, the power for tests of
interactions (hypothesis 3) is slightly larger for
the three-level designs for m = 6 and m = 10.
The orthogonal designs and the three-level de-
signs appear to perform comparably for tests of
this hypothesis for m = 12.

Projective Properties

In this section, we examine the characteristics of
the two- and three-dimensional projections of the
proposed designs.

In two dimensions, by construction, the designs
project to the support of the 3 × 3 factorial design.
For any design in the class, the projection consists of
one overall center point, four edge center points and
2m−4 corner points. The corner-point design will be

balanced if the design distributes the 2m − 4 points
equally to the four corners, and from this observa-
tion it is easy to see that corner-point balance can
only occur if m is even. It turns out that, in every
case we have examined having six or more factors,
corner-point balance occurs for all two-dimensional
projections of our designs when m is even. When m
is odd, all corner-point designs are nearly balanced, in
the sense that the number of replications of any cor-
ner point for any projection is (m/2−1)±1/2. Thus,
for even m, the two-dimensional projections are cen-
tral composite designs having m/2 − 1 replicates of
the corners, one center point, and α (the length of the
star point projection) equal to one. For odd m, the
corner points are replicated as equally as possible.

In three dimensions, the designs do not fully
project to the support of a 3× 3× 3 factorial design.
However, for every design we have examined, and
for every projection, the full three-factor quadratic
model is estimable and the design represented by the
projection exhibits a very high level of D-efficiency
for this model. This is demonstrated in Table 8,
where we show, for 6 ≤ m ≤ 12, the average, min-
imum, and maximum D-efficiencies, taken over all
possible three-dimensional projections of the designs
in Figure 1. From column 3 of the table, we observe
that the average D-efficiency ranges from 91%, for
m = 7, to 97%, for m = 8. Another interesting
finding was that, in every case in which the three-
level design was orthogonal (i.e., for m = 6, m = 8,
and m = 10), every projection led to the same D-
efficiency. For example, for the 10-factor design, we
see that there were 120 three-dimensional projec-
tions. The D-efficiency for every one of these pro-
jections was 95% for estimation of the full quadratic
model. These results indicate that, if the analysis in-
dicates that only two or three factors are active, a

TABLE 8. Average, Minimum and Maximum D-Efficiencies for Estimation of Full Quadratic Model for

All Three-Dimensional Projections of Designs with m Factors (6 ≤ m ≤ 12)

Number of Number of Average Minimum Maximum
factors (m) projections D-efficiency D-efficiency D-efficiency

6 20 0.92 0.92 0.92
7 35 0.91 0.81 0.97
8 56 0.97 0.97 0.97
9 84 0.95 0.88 0.95

10 120 0.95 0.95 0.95
11 165 0.94 0.89 0.95
12 220 0.93 0.90 0.94
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full quadratic polynomial in those factors can be es-
timated with a very high level of efficiency.

Suggestions for Analysis

The analysis of these designs is straightforward if
only main effects or main and pure-quadratic effects
are active. Then a multiple regression model con-
taining the main effects only or a saturated model
containing both main and pure-quadratic effects will
produce coefficients that are unbiased assuming no
third- or higher-order effects.

The analysis becomes more challenging if both
two-factor interactions and pure-quadratic effects
are active because these may be correlated, as
shown previously. Figure 3 shows the column cor-
relations for the design shown in Table 2. Columns
labeled “X1*X1” through “X6*X6” represent the
pure-quadratic terms. Columns “X1*X2” through
“X5*X6” show the correlations for the two-factor
interaction columns. Note that the main effects are
uncorrelated with each other and all second-order ef-
fects.

The properties of the design do not depend on
the response yi, but in order to illustrate how the
analysis might proceed, we generated entries in the
response column y in Table 2 using the formula

yi = 20 + 4xi,1 + 3xi,2 − 2xi,3 − xi,4 + 5xi,2xi,3

+ 6x2
i,1 + εi, (8)

where the errors, ε, are independently normally dis-
tributed with mean zero and variance 1.

Following Hamada and Wu (1992), we performed
forward stepwise regression in JMP using the “Com-
bine” option for the choice of rules and a p-value to
enter of 0.1. We considered all terms up through sec-
ond order for our “full model”. In JMP, the “Com-
bine” option for the choice of rules requires that the
test for entering any higher order term must include
all lower order terms. This rule enforces models with
strong heredity. For example, in the second step of
the forward stepwise algorithm, the x23 term is added
along with x2 and x3 because the three-degree-of-
freedom test for all three terms is the most signif-
icant of all possible tests at this stage. The final
model found by the forward stepwise procedure in
JMP added the effects x4 and x44, resulting in a
Type I error from including the x44 term and having
AICc = 83.72. Note that this model correctly identi-
fies the active factor set, namely, factors one through
four.

Another standard approach employs best-subsets
regression, based on the corrected Akaike’s informa-
tion criterion, AICc (Hurvich and Tsai, 1989). We fit
all possible models involving first- and second-order
terms having 10 or fewer predictors. (With n = 13,
10 is the maximum number of predictors that can
be included with AICc). The best model included
columns x1, x2, x3, x23, and x11, with AICc = 70.63.
Thus, minimizing the AICc criterion results in a
model exhibiting strong heredity with one Type II
error due to missing the term x4. Running the true
model (8) leads to AICc = 71.25. Note that the true,
normalized effect of term x4 is |β|/σ = 1. Our power
study indicated that the probability of detecting such
an effect is 0.821, so finding it was not guaranteed.

Generally, we recommend using forward stepwise
regression (or some other modern and commercially
available model-selection tool) where the full set of
model terms consists of all first- and second-order
effects and with provisions to ensure models with
strong heredity. Note that, if there are multiple ac-
tive pure-quadratic and two-factor interaction terms,
there may be model confounding. That is, two or
more models may yield identical ŷ-vectors. In such
cases, the all-subsets regression will identify the con-
founded models and additional runs will be necessary
to resolve the confounding.

Discussion and Conclusions

We have introduced a class of economical three-
level designs for screening quantitative factors in the
presence of active second-order effects. These designs
provide a definitive approach to screening in that
main effects are not biased by any second-order effect
and all quadratic effects are estimable. Moreover, in
the presence of sparsity in the number of active fac-
tors, our designs project to highly efficient response
surface designs. We have also provided an algorithm
for generating these designs for any number of fac-
tors. Our designs have the minimum possible num-
ber of runs for estimating both the main and pure-
quadratic effects of the factors.

These designs need not be limited to exactly
2m + 1 runs. Designs having larger numbers of runs
can be derived from the (2m + 1)-run designs in Ta-
ble 1 (or generated by the algorithm) while main-
taining basic properties. For example, for odd num-
bers of factors, it follows from our discussion of two-
dimensional projections that our designs cannot be
orthogonal for the main effects. For investigators who
require orthogonal designs, we can suggest the fol-
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lowing. At the expense of two extra runs, orthogonal
designs for five, seven, or nine factors can be obtained
by dropping a column from our 6, 8, and 10-factor
designs, respectively. Alternatively, a design having
more than 2m+1 runs may be required for increased
power. In this case, a design based on 2m+1+2k runs
can be obtained by dropping any k columns from the
existing design for m + k factors.

This work can be extended in a number of direc-
tions. Planned future work includes the modification
of the design to accommodate two-level categorical
factors. Other useful areas of inquiry include the de-
velopment of augmentation strategies in the presence
of many active effects, the development of effective
blocking schemes, the development of combinatorial
construction methods, and the assessment of new es-
timation strategies, such as the Lasso (Tibshirani
(1996)) and the Dantzig selector (Candes and Tao
(2007)) when used in connection with these designs.

Appendix 1
Pseudocode for Algorithm

m = number of factors
n = number of runs = 2m + 1
s = number of random starts

1) for start = 1 to s do 2) and 3)
2) Create starting design

a. F = mxn matrix of zeros
b. for row = 1 to n−1 by 2

for column = 1 to m
if column ˜= 2*row−1 &

column ˜= 2*row do
set F[row,column] = 2*uniform random
− 1

set F[row+1,column] = 2*uniform
random − 1

end if
end for

end for

3) Improve starting design
a. X = column of ones prepended to F
b. dCurrent = determinant of X
c. set iteration counter to 1
d. set maximum number of iterations (maxiter)
e. set madeswitch to true
f. while madeswitch & iteration counter <

maxiter do

set madeswitch to false
for row = 1 to n−1 by 2

for column = 1 to m
Z = X
if column ˜= 2*row−1 & column ˜=

2*row do
if Z[row,column+1] = 1

set Z[row,column+1] = −1
set Z[row+1,column+1] = 1
dTemporary = determinant of Z
if dTemporary > dCurrent

dCurrent = dTemporary
set X[row,column+1] = −1
set X[row+1,column+1] = 1
set madeswitch to true

end if
else if Z[row,column+1] = −1

set Z[row,column+1] = 1
set Z[row+1,column+1] = −1
dTemporary = determinant of Z
if dTemporary > dCurrent

dCurrent = dTemporary
set X[row,column+1] = 1
set X[row+1,column+1] = −1
set madeswitch to true

end if
else

set Z[row,column+1] = 1
set Z[row+1,column+1] = −1
dTemporary1 = determinant of Z
set Z[row,column+1] = −1
set Z[row+1,column+1] = 1
dTemporary2 = determinant of Z
if dTemporary1 > dTemporary2

dCurrent = dTemporary1
set X[row,column+1] = 1
set X[row+1,column+1] = −1
set madeswitch to true

else
dCurrent = dTemporary2
set X[row,column+1] = −1
set X[row+1,column+1] = 1
set madeswitch to true

end if
end if

end if
end for

end for
increment iteration counter

end while
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Appendix 2
Justification of Correlations (4)–(6)

In this appendix, we provide justifications for cor-
relation expressions (4), (5), and (6). Let x̄qq(m)
denote the average of column xqq for an m-factor
design. The correlation between any two quadratic
columns is (all sums range from i = 1 to i = 2m+1)

rc
qq,ss =

∑
[xi,qq − x̄qq(m)][xi,ss − x̄ss(m)]√∑

[xi,qq − x̄qq(m)]2
∑

[xi,ss − x̄ss(m)]2
.

(9)
We first note that, for q = 1, . . . , m, the column xqq

consists of 3 zeros and (2m+1)−3 ones. As a result,
we have x̄qq(m) = 2(m−1)/(2m+1). Then

∑
[xi,qq−

x̄qq(m)]2 = 3[0−x̄qq(m)]2+[(2m+1)−3][1−x̄qq(m)]2,
again for any q. Denote this sum of squares term by
SSqq(m). Expression (9) becomes

rc
qq,ss =

∑
[xi,qq − x̄qq(m)][xi,ss − x̄qq(m)]√

SS2
qq(m)

=
∑

xi,qqxi,ss − 2x̄qq(m)
∑

xi,qq

SSqq(m)

+
∑

[x̄qq(m)]2

SSqq(m)

=
[(2m + 1) − 5] − 2x̄qq(m)[(2m + 1) − 3]

SSqq(m)

+
(2m + 1)[x̄qq(m)]2

SSqq(m)
.

Substituting the expressions for x̄qq(m) and SSqq(m)
into the above and simplifying yields (4).

To obtain (5) and (6), we assume m is even and
that the interaction column sums to zero. For s �= q,
we have

rc
qq,qs =

∑
[xi,qq − x̄qq(m)][xi,qs − 0]√
SSqq(m)

∑
[xi,qs − 0]2

=
∑

xi,qqxi,qs

SSqq(m)[(2m + 1) − 3]2
. (10)

Because xi,qs �= 0 ⇒ xi,qq = 1, the numerator is∑
xi,qqxi,qs =

∑
xi,qs = 0; hence, rc

qq,qs = 0, as
required by (5).

To obtain (6) for s �= q, t �= q, and s �= t, we have,
from (10),

rc
qq,st =

∑
xi,qqxi,st

SSqq(m)[(2m + 1) − 3]2
. (11)

The column xqq consists of all ones with three zeros—
one in the row corresponding to the overall center
point and two in the two rows of one foldover pair.
For this pair, the two entries in xst are either iden-
tically +1 or identically −1. Because

∑
xi,st = 0 by

assumption, it follows that the numerator in (11) is∑
xi,qqxi,qs = ±2. Simplification yields (6).
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