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Variance Components and Mixed Model 
ANOVA/ANCOVA 

 

 Basic Ideas  
 Properties of Random Effects  
 Estimation of Variance Components (Technical Overview)  

• Estimating the Variation of Random Factors  
• Estimating Components of Variation  
• Testing the Significance of Variance Components  
• Estimating the Population Intraclass Correlation  

 
The Variance Components and Mixed Model ANOVA/ANCOVA section describes a comprehensive set of 
techniques for analyzing research designs that include random effects; however, these techniques are also 
well suited for analyzing large main effect designs (e.g., designs with more than 200 levels per factor), 
designs with many factors where the higher order interactions are not of interest, and analyses involving 
case weights. 

There are several sections in this electronic textbook that discuss Analysis of Variance for factorial or 
specialized designs. For a discussion of these sections and the types of designs for which they are best 
suited, refer to Methods for Analysis of Variance. Note, however, that General Linear Models describes 
how to analyze designs with any number and type of between effects and compute ANOVA-based variance 
component estimates for any effect in a mixed-model analysis. 

 
Basic Ideas 

Experimentation is sometimes mistakenly thought to involve only the manipulation of levels of the 
independent variables and the observation of subsequent responses on the dependent variables. 
Independent variables whose levels are determined or set by the experimenter are said to have fixed 
effects. There is a second class of effects, however, that is often of great interest to the researcher; random 
effects are classification effects where the levels of the effects are assumed to be randomly selected from 
an infinite population of possible levels. 

Many independent variables of research interest are not fully amenable to experimental manipulation, but 
nevertheless can be studied by considering them to have random effects. For example, the genetic makeup 
of individual members of a species cannot at present be (fully) experimentally manipulated, yet it is of great 
interest to the geneticist to assess the genetic contribution to individual variation on outcomes such as 
health, behavioral characteristics, and the like. As another example, a manufacturer might want to estimate 
the components of variation in the characteristics of a product for a random sample of machines operated by 
a random sample of operators. The statistical analysis of random effects is accomplished by using the 
random effect model if all of the independent variables are assumed to have random effects, or by using the 
mixed model if some of the independent variables are assumed to have random effects and other 
independent variables are assumed to have fixed effects.  

Properties of random effects. To illustrate some of the properties of random effects, suppose you 
collected data on the amount of insect damage to different varieties of wheat. It is impractical to study insect 
damage for every possible variety of wheat, so to conduct the experiment, you randomly select four varieties 
of wheat to study. Plant damage is rated for up to a maximum of four plots per variety. Ratings are on a 0 
(no damage) to 10 (great damage) scale. The following data for this example are presented in Milliken and 
Johnson (1992, p. 237). 
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DATA: wheat.sta 3v 
VARIETY PLOT DAMAGE 

A 
A 
A 
B 
B 
B 
B 
C 
C 
C 
C 
D 
D 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

3.90 
4.05 
4.25 
3.60 
4.20 
4.05 
3.85 
4.15 
4.60 
4.15 
4.40 
3.35 
3.80 

 
To determine the components of variation in resistance to insect damage for Variety and Plot, an ANOVA 
can first be performed. Perhaps surprisingly, in the ANOVA, Variety can be treated as a fixed or as a 
random factor without influencing the results (provided that Type I Sums of squares are used and that 
Variety is always entered first in the model). The spreadsheet below shows the ANOVA results of a mixed 
model analysis treating Variety as a fixed effect and ignoring Plot, i.e., treating the plot-to-plot variation as a 
measure of random error. 

ANOVA Results: DAMAGE (wheat.sta) 
 
Effect 

Effect 
(F/R) 

df 
Effect 

MS 
Effect 

df 
Error 

MS 
Error 

 
F 

 
p 

{1}VARIETY Fixed 3 .270053 9 .056435 4.785196 .029275 
 
Another way to perform the same mixed model analysis is to treat Variety as a fixed effect and Plot as a 
random effect. The spreadsheet below shows the ANOVA results for this mixed model analysis. 

ANOVA Results for Synthesized Errors: DAMAGE (wheat.sta)  

 df error computed using Satterthwaite method 
 
Effect 

Effect 
(F/R) 

df 
Effect 

MS 
Effect 

df 
Error 

MS 
Error 

 
F 

 
p 

{1}VARIETY 
{2}PLOT  

Fixed 
Random 

3 
9 

.270053 

.056435 
9 

----- 
.056435 

----- 
4.785196 

----- 
.029275 

----- 
 
The spreadsheet below shows the ANOVA results for a random effect model treating Plot as a random 
effect nested within Variety, which is also treated as a random effect. 

ANOVA Results for Synthesized Errors: DAMAGE (wheat.sta)  

 df error computed using Satterthwaite method 
 
Effect 

Effect 
(F/R) 

df 
Effect 

MS 
Effect 

df 
Error 

MS 
Error 

 
F 

 
p 

{1}VARIETY 
{2}PLOT  

Random 
Random 

3 
9 

.270053 

.056435 
9 

----- 
.056435 

----- 
4.785196 

----- 
.029275 

----- 
 
 

http://statsoft.com/textbook/glosf.html#Fixed%20Effects
http://statsoft.com/textbook/glosf.html#Fixed%20Effects
http://statsoft.com/textbook/glosr.html#Random%20Effects
http://statsoft.com/textbook/glosr.html#Random%20Effects


3 
 

As can be seen, the tests of significance for the Variety effect are identical in all three analyses (and in fact, 
there are even more ways to produce the same result). When components of variance are estimated, 
however, the difference between the mixed model (treating Variety as fixed) and the random model (treating 
Variety as random) becomes apparent. The spreadsheet below shows the variance component estimates 
for the mixed model treating Variety as a fixed effect. 

Components of Variance (wheat.sta) 

 Mean Squares Type: 1 
Source DAMAGE 
{2}PLOT 
Error 

.056435 
0.000000 

 
The spreadsheet below shows the variance component estimates for the random effects model treating 
Variety and Plot as random effects. 

Components of Variance (wheat.sta) 

 Mean Squares Type: 1 
Source DAMAGE 
{1}VARIETY 
{2}PLOT 
Error 

.067186 

.056435 
0.000000 

 
As can be seen, the difference in the two sets of estimates is that a variance component is estimated for 
Variety only when it is considered to be a random effect. This reflects the basic distinction between fixed 
and random effects. The variation in the levels of random factors is assumed to be representative of the 
variation of the whole population of possible levels. Thus, variation in the levels of a random factor can be 
used to estimate the population variation. Even more importantly, covariation between the levels of a 
random factor and responses on a dependent variable can be used to estimate the population component of 
variance in the dependent variable attributable to the random factor. The variation in the levels of fixed 
factors is instead considered to be arbitrarily determined by the experimenter (i.e., the experimenter can 
make the levels of a fixed factor vary as little or as much as desired). Thus, the variation of a fixed factor 
cannot be used to estimate its population variance, nor can the population covariance with the dependent 
variable be meaningfully estimated. With this basic distinction between fixed effects and random effects in 
mind, we now can look more closely at the properties of variance components. 

Estimation of Variance Components (Technical Overview) 

The basic goal of variance component estimation is to estimate the population covariation between 
random factors and the dependent variable. Depending on the method used to estimate variance 
components, the population variances of the random factors can also be estimated, and significance tests 
can be performed to test whether the population covariation between the random factors and the dependent 
variable are nonzero.  

Estimating the variation of random factors. The ANOVA method provides an integrative approach to 
estimating variance components, because ANOVA techniques can be used to estimate the variance of 
random factors, to estimate the components of variance in the dependent variable attributable to the random 
factors, and to test whether the variance components differ significantly from zero. The ANOVA method for 
estimating the variance of the random factors begins by constructing the Sums of squares and cross 
products (SSCP) matrix for the independent variables. The sums of squares and cross products for the 
random effects are then residualized on the fixed effects, leaving the random effects independent of the 
fixed effects, as required in the mixed model (see, for example, Searle, Casella, & McCulloch, 1992). The 
residualized Sums of squares and cross products for each random factor are then divided by their degrees 
of freedom to produce the coefficients in the Expected mean squares matrix. Nonzero off-diagonal 
coefficients for the random effects in this matrix indicate confounding, which must be taken into account 
when estimating the population variance for each factor. For the wheat.sta data, treating both Variety and 
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Plot as random effects, the coefficients in the Expected mean squares matrix show that the two factors are 
at least somewhat confounded. The Expected mean squares spreadsheet is shown below. 

Expected Mean Squares (wheat.sta) 

 Mean Squares Type: 1 
 
Source 

Effect 
(F/R) 

 
VARIETY 

 
PLOT 

 
Error 

{1}VARIETY 
{2}PLOT 
Error 

Random 
Random 

3.179487 1.000000 
1.000000 

1.000000 
1.000000 
1.000000 

 
The coefficients in the Expected mean squares matrix are used to estimate the population variation of the 
random effects by equating their variances to their expected mean squares. For example, the estimated 
population variance for Variety using Type I Sums of squares would be 3.179487 times the Mean square for 
Variety plus 1 times the Mean square for Plot plus 1 times the Mean square for Error. 

The ANOVA method provides an integrative approach to estimating variance components, but it is not 
without problems (i.e., ANOVA estimates of variance components are generally biased, and can be 
negative, even though variances, by definition, must be either zero or positive). An alternative to ANOVA 
estimation is provided by maximum likelihood estimation. Maximum likelihood methods for estimating 
variance components are based on quadratic forms and typically, but not always, require iteration to find a 
solution. Perhaps the simplest form of maximum likelihood estimation is MIVQUE(0) estimation. MIVQUE(0) 
produces Minimum Variance Quadratic Unbiased Estimators (i.e., MIVQUE). In MIVQUE(0) estimation, 
there is no weighting of the random effects (thus the 0 [zero] after MIVQUE), so an iterative solution for 
estimating variance components is not required. MIVQUE(0) estimation begins by constructing the 
Quadratic sums of squares (SSQ) matrix. The elements for the random effects in the SSQ matrix can most 
simply be described as the sums of squares of the sums of squares and cross products for each random 
effect in the model (after residualization on the fixed effects). The elements of this matrix provide 
coefficients, similar to the elements of the Expected Mean Squares matrix, which are used to estimate the 
covariances among the random factors and the dependent variable. The SSQ matrix for the wheat.sta data 
is shown below. Note that the nonzero off-diagonal element for Variety and Plot again shows that the two 
random factors are at least somewhat confounded. 

MIVQUE(0) Variance Component Estimation (wheat.sta) 

 SSQ Matrix 
Source VARIETY PLOT Error DAMAGE 
{1}VARIETY 
{2}PLOT 
Error 

31.90533 
9.53846 
9.53846 

9.53846 
12.00000 
12.00000 

9.53846 
12.00000 
12.00000 

2.418964 
1.318077 
1.318077 

 
Restricted Maximum Likelihood (REML) and Maximum Likelihood (ML) variance component estimation 
methods are closely related to MIVQUE(0). In fact, in some programs, REML and ML use MIVQUE(0) 
estimates as start values for an iterative solution for the variance components, so the elements of the SSQ 
matrix serve as initial estimates of the covariances among the random factors and the dependent variable 
for both REML and ML.  

Estimating components of variation. For ANOVA methods for estimating variance components, a 
solution is found for the system of equations relating the estimated population variances and covariances 
among the random factors to the estimated population covariances between the random factors and the 
dependent variable. The solution then defines the variance components. The spreadsheet below shows the 
Type I Sums of squares estimates of the variance components for the wheat.sta data. 
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Components of Variance (wheat.sta) 
 Mean Squares Type: 1 
Source DAMAGE 
{1}VARIETY 
{2}PLOT 
Error 

0.067186 
0.056435 
0.000000 

 
MIVQUE(0) variance components are estimated by inverting the partition of the SSQ matrix that does not 
include the dependent variable (or finding the generalized inverse, for singular matrices), and postmultiplying 
the inverse by the dependent variable column vector. This amounts to solving the system of equations that 
relates the dependent variable to the random independent variables, taking into account the covariation 
among the independent variables. The MIVQUE(0) estimates for the wheat.sta data are listed in the 
spreadsheet shown below. 

MIVQUE(0) Variance Component Estimation (wheat.sta) 
 Variance Components 
Source DAMAGE 
{1}VARIETY 
{2}PLOT 
Error 

0.056376 
0.065028 
0.000000 

 
REML and ML variance components are estimated by iteratively optimizing the parameter estimates for the 
effects in the model. REML differs from ML in that the likelihood of the data is maximized only for the 
random effects, thus REML is a restricted solution. In both REML and ML estimation, an iterative solution is 
found for the weights for the random effects in the model that maximizes the likelihood of the data. Some 
programs use MIVQUE(0) estimates as the start values for both REML and ML estimation, so the relation 
among these three techniques is close indeed. The statistical theory underlying maximum likelihood 
variance component estimation techniques is an advanced topic (Searle, Casella, & McCulloch, 1992, is 
recommended as an authoritative and comprehensive source). Implementation of maximum likelihood 
estimation algorithms, furthermore, is difficult (see, for example, Hemmerle & Hartley, 1973, and Jennrich & 
Sampson, 1976, for descriptions of these algorithms), and faulty implementation can lead to variance 
component estimates that lie outside the parameter space, converge prematurely to nonoptimal solutions, or 
give nonsensical results. Milliken and Johnson (1992) noted all of these problems with the commercial 
software packages they used to estimate variance components. 

The basic idea behind both REML and ML estimation is to find the set of weights for the random effects in 
the model that minimize the negative of the natural logarithm times the likelihood of the data (the likelihood 
of the data can vary from zero to one, so minimizing the negative of the natural logarithm times the likelihood 
of the data amounts to maximizing the probability, or the likelihood, of the data). The logarithm of the REML 
likelihood and the REML variance component estimates for the wheat.sta data are listed in the last row of 
the Iteration history spreadsheet shown below. 

Iteration History (wheat.sta) 
 Variable: DAMAGE 
Iter. Log LL Error VARIETY  

1 
2 
3 
4 
5 
6 
7 

-2.30618 
-2.25253 
-2.25130 
-2.25088 
-2.25081 
-2.25081 
-2.25081 

.057430 

.057795 

.056977 

.057005 

.057006 

.057003 

.057003 

.068746 

.073744 

.072244 

.073138 

.073160 

.073155 

.073155 
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The logarithm of the ML likelihood and the ML estimates for the variance components for the wheat.sta data 
are listed in the last row of the Iteration history spreadsheet shown below. 

Iteration History (wheat.sta) 

 Variable: DAMAGE 
Iter. Log LL Error VARIETY  

1 
2 
3 
4 
5 
6 

-2.53585 
-2.48382 
-2.48381 
-2.48381 
-2.48381 
-2.48381 

.057454 

.057427 

.057492 

.057491 

.057492 

.057492 

.048799 

.048541 

.048639 

.048552 

.048552 

.048552 

 

 
As can be seen, the estimates of the variance components for the different methods are quite similar. In 
general, components of variance using different estimation methods tend to agree fairly well (see, for 
example, Swallow & Monahan, 1984).  

Testing the significance of variance components. When maximum likelihood estimation 
techniques are used, standard linear model significance testing techniques may not be applicable. 
ANOVA techniques such as decomposing sums of squares and testing the significance of effects by taking 
ratios of mean squares are appropriate for linear methods of estimation, but generally are not appropriate for 
quadratic methods of estimation. When ANOVA methods are used for estimation, standard significance 
testing techniques can be employed, with the exception that any confounding among random effects must 
be taken into account. 

To test the significance of effects in mixed or random models, error terms must be constructed that contain 
all the same sources of random variation except for the variation of the respective effect of interest. This is 
done using Satterthwaite's method of denominator synthesis (Satterthwaite, 1946), which finds the linear 
combinations of sources of random variation that serve as appropriate error terms for testing the significance 
of the respective effect of interest. The spreadsheet below shows the coefficients used to construct these 
linear combinations for testing the Variety and Plot effects. 

Denominator Synthesis: Coefficients (MS Type: 1) (wheat.sta) 

 
The synthesized MS Errors are linear 
combinations of the resp. MS effects 

Effect (F/R) VARIETY PLOT Error 
{1}VARIETY 
{2}PLOT 

Random 
Random 

 1.000000  
1.000000 

 
The coefficients show that the Mean square for Variety should be tested against the Mean square for Plot, 
and that the Mean square for Plot should be tested against the Mean square for Error. Referring back to the 
Expected mean squares spreadsheet, it is clear that the denominator synthesis has identified appropriate 
error terms for testing the Variety and Plot effects. Although this is a simple example, in more complex 
analyses with various degrees of confounding among the random effects, the denominator synthesis can 
identify appropriate error terms for testing the random effects that would not be readily apparent. 

To perform the tests of significance of the random effects, ratios of appropriate Mean squares are formed to 
compute F statistics and p-values for each effect. Note that in complex analyses, the degrees of freedom for 
random effects can be fractional rather than integer values, indicating that fractions of sources of variation 
were used in synthesizing appropriate error terms for testing the random effects. The spreadsheet displaying 
the results of the ANOVA for the Variety and Plot random effects is shown below. Note that, for this simple 
design, the results are identical to the results presented earlier in the spreadsheet for the ANOVA treating 
Plot as a random effect nested within Variety. 

To index 
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ANOVA Results for Synthesized Errors: DAMAGE (wheat.sta)  
 df error computed using Satterthwaite method 

 
Effect 

Effect 
(F/R) 

df 
Effect 

MS 
Effect 

df 
Error 

MS 
Error 

 
F 

 
p 

{1}VARIETY 
{2}PLOT  

Fixed 
Random 

3 
9 

.270053 

.056435 
9 

----- 
.056435 

----- 
4.785196 

----- 
.029275 

----- 
 
As shown in the spreadsheet, the Variety effect is found to be significant at p < .05, but as would be 
expected, the Plot effect cannot be tested for significance because plots served as the basic unit of analysis. 
If data on samples of plants taken within plots were available, a test of the significance of the Plot effect 
could be constructed. 

Appropriate tests of significance for MIVQUE(0) variance component estimates generally cannot be 
constructed except in special cases (see Searle, Casella, & McCulloch, 1992). Asymptotic (large sample) 
tests of significance of REML and ML variance component estimates, however, can be constructed for the 
parameter estimates from the final iteration of the solution. The spreadsheet below shows the asymptotic 
(large sample) tests of significance for the REML estimates for the wheat.sta data. 

Restricted Maximum Likelihood Estimates (wheat.sta) 

 
Variable: DAMAGE 
-2*Log(Likelihood)=4.50162399 

 
Effect 

Variance 
Comp. 

Asympt. 
Std.Err. 

Asympt. 
z 

Asympt. 
p 

{1}VARIETY 
Error 

.073155 

.057003 
.078019 
.027132 

.937656 
2.100914 

.348421 

.035648 
 
The spreadsheet below shows the asymptotic (large sample) tests of significance for the ML estimates for 
the wheat.sta data. 

Maximum Likelihood Estimates (wheat.sta) 

 
Variable: DAMAGE 
-2*Log(Likelihood)=4.96761616 

 
Effect 

Variance 
Comp. 

Asympt. 
Std.Err. 

Asympt. 
z 

Asympt. 
p 

{1}VARIETY 
Error 

.048552 

.057492 
.050747 
.027598 

.956748 
2.083213 

.338694 

.037232 
 

It should be emphasized that the asymptotic tests of significance for REML and ML variance component 
estimates are based on large sample sizes, which certainly is not the case for the wheat.sta data. For this 
data set, the tests of significance from both analyses agree in suggesting that the Variety variance 
component does not differ significantly from zero. 

For basic information on ANOVA in linear models, see also Elementary Concepts. 

Estimating the population intraclass correlation. Note that if the variance component estimates for the 
random effects in the model are divided by the sum of all components (including the error component), the 
resulting percentages are population intraclass correlation coefficients for the respective effects. 
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