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 Many machine learning methods exist in the
literature and in industry.
◦ What works well for one problem may not work well for 

the next problem.
◦ In addition to poor model fit, an incorrect application of

methods can lead to incorrect inference.
 Implications for data-driven business decisions.
 Low future confidence in data science and its results.
 Lower quality software products.

 Understanding the intuition and mathematics
behind these methods can ameliorate these
problems.
◦ This talk focuses on building intuition.
◦ Links to theoretical papers underlying each method.
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 Régressions paramétriques et extensions

 Régressions semi paramétriques et extensions

 Régressions non paramétriques via méthodes d’optimisation

 Combinaisons de méthodes supervisées et non supervisées

 Apprentissage non supervisé

 Séries chronologiques

P L A N 



 Total variance of a normally-
distributed outcome as cookie jar.

 Error as empty space.
 Predictors accounting for pieces of 

the total variance as cookies.
◦ Based on relationship to predictor and to

each other.
 Cookies accounting for the same piece of 

variance as those smooshed together.
 Many statistical assumptions need

to be met.

www.zelcoviacookies.com
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 Extends multiple
regression.
◦ Many types of outcome 

distributions.
◦ Transform an outcome 

variable to create a linear 
relationship with 
predictors.

 Sort of like silly putty 
stretching the outcome 
variable in the data 
space.

 Does not work on high-
dimensional data where
predictors > 
observations.

 Only certain outcome 
distributions.
◦ Exponential family as 

example.

tomstock.photoshelter.com
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 Impose size and/or variable
overlap constraints (penalties) on
generalized linear models.
◦ Elastic net as hybrid of these 

constraints.
◦ Can handle large numbers of 

predictors.
 Reduce the number of predictors.
◦ Shrink some predictor estimates to 0.
◦ Examine sets of similar predictors.

 Similar to eating irrelevant cookies 
in the regression cookie jar or a 
cowboy at the origin roping 
coefficients that get too close
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 Homotopy arrow example
◦ Red and blue arrows can be 

deformed into each other by 
wiggling and stretching the 
line path with anchors at 
start and finish of line

◦ Yellow arrow crosses holes 
and would need to backtrack 
or break to the surface to 
freely wiggle into the blue or 
red line

 Homotopy method in
LASSO/LARS wiggles an
easy regression path into 
an optimal regression
path
◦ Avoids obstacles that can 

trap other regression
estimators (peaks, valleys, 
saddles…)

 Homotopy as path
equivalence
◦ Intrinsic property of 

topological spaces (such 
as data manifolds)
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 Instead of fitting model to data, fit model to
tangent space (what isn’t the data).
◦ Deals with collinearity, as parallel vectors share a 

tangent space (only one selected of collinear 
group).
◦ LASSO and LARS extensions.
◦ Rao scoring for selection.
 Effect estimates (angles).
 Model selection criteria.
 Information criteria.
 Deviance scoring.
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 Fit all possible models and 
figure out likelihood of each 
given observed data.
◦ Based on Bayes’ Theorem and

conditional probability.
◦ Instead of giving likelihood 

that data came from a specific 
parameterized population
(univariate), figure out 
likelihood of set of data 
coming from sets of 
population (multivariate).

◦ Can select naïve prior (no 
assumptions on model or 
population) or make an
informed guess (assumptions
about population or important 
factors in model).

◦ Combine multiple models 
according to their likelihoods 
into a blended model given 
data.
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Semi-Parametric Extensions of Regression
CHAPTER 2



 Extends a generalized linear
models by estimating
unknown (nonlinear)
functions of an outcome on
intervals of a predictor.

 Use of “knots” to break
function into intervals.

 Similar to a downhill skier.
◦ Slope as a function of outcome.
◦ Skier as spline.
◦ Flags as knots anchoring the 

skier as he travels down the
slope.

www.dearsportsfan.com
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 Multivariate adaptive regression splines as an
extension of spline models to multivariate

data
◦ Knots placed according to multivariate structure 

and splines fit between knots
◦ Much like fixing a rope to the peaks and valleys of a 

mountain range, where the rope has enough slack 
to hug the terrain between its fixed points
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 Extends spline models
to the relationships of
many predictors to an
outcome.
◦ Also allows for a “silly-

putty” transformation of 
the outcome variable.

 Like multiple skiers on
many courses and 
mountains to estimate
many relationships in 
the dataset.

www.filigreeinn.com
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 Chop data into 
partitions and then
fit multiple
regression models
to each partition.

 Divide-and-conquer
approach.

 Examples:
◦ Multivariate adaptive

regression splines
◦ Regression trees
◦ Morse-Smale 

regression

www.pinterest.com
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 Based on a branch of math
called topology.
◦ Study of changes in function 

behavior on shapes.
◦ Used to classify similarities/ 

differences between shapes.
◦ Data clouds turned into discrete 

shape combinations (simplices).
 Use these principles to 

partition data and fit elastic net 
models to each piece.
◦ Break data into multiple toy sets.
◦ Analyze sets for underlying

properties of each toy.
 Useful visual output for 

additional data mining.
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 Linear or non-linear
support beams used to
separate group data for
classification or map data
for kernel- based
regression.

 Much like scaffolding
and support beams
separating and holding
up parts of a high rise.

http://en.wikipedia.org/wiki/Support_vector_machine

leadertom.en.ec21.com 16
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 Based on processing 
complex, nonlinear
information the way
the human brain 
does via a series of
feature mappings.

www.alz.org

Arrows denote mapping 
functions, which take one 
topological space to another

colah.github.io
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 Type of shallow, wide neural network.
 Reduces framework to a penalized linear algebra 

problem, rather than iterative training (much faster to 
solve).

 Based on random mappings.
 Shown to converge to correct 

classification/regression (universal approximation 
property—may require unreasonably wide networks).

 Semi-supervised learning extensions.
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 Added layers in neural 
network to solve width 
problem in single-layer 
networks for universal 
approximation.

 More effective in learning
features of the data.

 Like sifting data with 
multiple sifters to distill 
finer and finer pieces of 
the data.

 Computationally 
intensive and requires 
architecture design and 
optimization.
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 Recent extension of 
deep learning 
framework from 
spreadsheet data to 
multiple simultaneous 
spreadsheets
◦ Spreadsheets may be of 

the same dimension or 
different dimensions

◦ Could process multiple 
or hierarchical networks 
via adjacency matrices

 Like sifting through 
data with multiple 
inputs of varying sizes 
and textures
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CHAPTER 3



 Classifies data according 
to optimal partitioning of 
data (visualized as a high-
dimensional cube).

 Slices data into squares, 
cubes, and hypercubes (4+ 
dimensional cubes).
◦ Like finding the best place to 

cut through the data with a 
sword.

 Option to prune tree for 
better model (glue some of 
the pieces back together).

 Notoriously unstable.
 Optimization possible to 

arrive at best possible 
trees (genetic algorithms).

tvtropes.org

22
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 Optimization technique.
◦ Minimize a loss function in

regression.
 Accomplished by choosing a

variable per step that achieves
largest minimization.

 Climber trying to descend a
mountain.
◦ Minimize height above sea level

per step.
 Directions (N, S, E, W) as a 

collection of variables.
 Climber rappels down cliff

according to these rules.

www.chinatravelca.com
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 Optimization helpers.

◦ Find global maximum or 
minimum by searching 
many areas 
simultaneously.

◦ Can impose restrictions.
 Teams of mountain

climbers trying to find 
the summit.

 Restrictions as climber 
supplies, hours of
daylight left to find
summit…

 Genetic algorithm as 
population of mountain 
climbers each climbing 
on his/her own.

wallpapers.brothersoft.com
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 One climber exploring multiple routes
simultaneously.

 Individual optimized through a series of
gates at each update until superposition
converges on one state
◦ Say wave 2 is the optimal combination of 

predictors
◦ Resultant combination slowly flattens to wave 2,

with the states of wave 1disappearing

http://philschatz.com/physics
-book/contents/m42249.html
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 Combine multiple models
of the same type (ex. trees)
for better prediction.
◦ Single models unstable.
 Equally-good estimates from

different models.
◦ Use bootstrapping.
 Multiple “marble draws” 

followed by model creation.
◦ Creates diversity of features.
◦ Creates models with different

biases and error.
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 Uses gradient descent 
algorithm to model an 
outcome based on
predictors (linear, tree,
spline…).

◦ Proceeds in steps, adding
variables and adjusting weights 
according to the algorithm.

 Like putting together a
puzzle.
◦ Algorithm first focuses on most 

important parts of the picture
(such as the Mona Lisa’s eyes).

◦ Then adds nuances that help
identify other missing pieces
(hands, landscape…).

play.google.com
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 Adds a penalty term to
boosted regression

◦ Can be formulated as 
LASSO/ridge 
regression/elastic net with
constraints

◦ Also leverages hardware to 
further speed up boosting 
ensemble

play.google.com
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 Single tree models poor predictors.
 Grow a forest of them for a strong predictor (another

ensemble method).
 Algorithm:
◦ Takes random sample of data.
◦ Builds one tree.
◦ Repeats until forest grown.
◦ Averages across forest to identify strong predictors.
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CHAPTER 4



 Principle Component Analysis
(PCA)
◦ Variance partitioning to combine 

pieces of variables into new 
linear subspace.

◦ Smashing cookies by kind and 
combining into a flat hybrid 
cookie in previous regression 
model.

 Manifold Learning
◦ PCA-like algorithms that 

combine pieces into a new 
nonlinear subspace.

◦ Non-flat cookie combining.
 Useful as pre-processing step 

for prediction models.
◦ Reduce dimension.
◦ Obtain uncorrelated, non-

overlapping variables (bases).

marmaladeandmileposts.com
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 Balanced sampling for low-frequency
predictors.
◦ Stratified samples (i.e. sample from bag of mostly 

white marbles and few red marbles with constraint
that 1/5th of draws must be red marbles).

 Dimension reduction/mapping pre-processing
◦ Principle component, manifold learning…
◦ Hybrid of neural network methods and tree models.
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 Aggregation of multiple
types of models.
◦ Like a small town election.
◦ Different people have different

views of the politics and care 
about different issues.

 Different modeling methods
capture different pieces of the
data and vote in different
pieces.
◦ Leverage strengths, minimize 

weaknesses
◦ Diversity of methods to better 

explore underlying data geometry
 Avoids multiple testing 

issues.
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 Subsembles
◦ Partition data into training sets
 Randomly selected or through

partition algorithm
◦ Train a model on each data 

partition
◦ Combine into final weighted 

prediction model
 This is similar to national 

elections.
◦ Each elector in the electoral

college learns for whom his
constituents voted.

◦ The final electoral college pools
these individual votes.

Full Training Dataset

Model Training
Datasets 1, 2, 3, 4

Final Subsemble Model
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 Combines 
superlearning and
subsembles for
better prediction
◦ Diversity improves

subsemble method 
(better able to explore 
data geometry)

◦ Bootstrapping improves
superlearner pieces
(more diversity within 
each method)

◦ Preliminary empirical 
evidence shows
efficacy of
combination.
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CHAPTER 5



 Classification of a data 
point based on the 
classification of its
nearest neighboring
points.

 Like a junior high 
lunchroom and 
student clicks.
◦ Students at the same 

table tend to be more 
similar to each other 
than to a distant table.

www.wrestlecrap.com
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 Iteratively separating
groups within a
dataset based on
similarity.

 Like untangling 
tangled balls of yarn
into multiple, single-
colored balls (ideally).
◦ Each step untangles the

mess a little further.
◦ Few stopping guidelines

(when it looks separated).krazymommakreations.blogspot.com
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 Hybrid of supervised and
unsupervised learning
(groupings and prediction).

 Uses graphical 
representation of data and
its relationships.

 Algorithms with connections
to topology, differential
geometry, and Markov
chains.

 Useful in combination with
other machine learning
methods to provide extra 
insight (ex. spectral 
clustering).
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 K-means algorithm with 
weighting and 
dimension reduction
components of
similarity measure.
◦ Simplify balls of string to 

warm colors and cool colors
before untangling.

 Can be reformulated as a
graph clustering problem.
◦ Partition subcomponents of

a graph based on flow
equations.

www.simplepastimes.com
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 Multivariate technique 
similar to mode or 
density clustering.

◦ Find peaks and valleys in 
data according to an 
input function on the 
data (level set slices)—
much like a watershed 
on mountains.

◦ Separate data based on 
shared peaks and valleys 
across slices (shared 
multivariate 
density/gradient).

◦ Many nice theoretical 
developments on validity 
and convergence.
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 Topological clustering.
◦ Define distance metric.
◦ Slice multidimensional dataset

with Morse function.
◦ Examine function behavior 

across slice.
◦ Cluster function behavior.
◦ Iterate through multiple slices

to obtain hierarchy of function
behavior.

 Much like examining the 
behavior of multiple
objects across a flip book.
◦ Nesting
◦ Cluster overlap

Filtered functions then used to
create various resolutions of a
modified Reeb graph summary
of topology.
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CHAPTER 6

Time Series Forecasting



 Similar to
decomposing

superposed states
◦ Seasonal trends
◦ Yearly trends
◦ Trend averages
◦ Dependencies on

previous time point
 Knit individual forecasted

pieces into a complete
forecast by superposing
these individual forecasts

 Several extensions to 
neural networks, time-
lagged machine learning
models…
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 A time-series method 
incorporating predictors
◦ Constant predictors at initial

time point
◦ Varying predictors at multiple 

time points
 Creates a sort of correlation 

web between predictors and 
time points
◦ Can handle multiple time lags 

and multivariate outcomes
◦ Can handle any GLM outcome 

links
 Related to partial 

differential equations of 
dynamic systems

45



 Data-based mining for
SEM
relationships/time-lag 
components
◦ Leverages conditional 

probability between 
predictors to find 
dependencies

◦ Does not require a priori 
model formulation like SEM

 Peeking at data to 
create a dependency 
web over time or 
predictors/outcome

 Can be validated by a
follow-up SEM based on
network structure

Time 1
Outcome

Predictor
2

Time 2 
Outcome

Time 3 
Outcome
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 Technically:
◦ Matrix decomposition 

(similar to PCA/manifold 
learning)

◦ Followed by spectral 
methods

◦ Cleaning of time-lagged 
covariance matrix

◦ Reconstruction with simple 
forecast

 Kind of like deconstructing,
cleaning, a rebuilding a car
engine
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 Combines k-nearest 
neighbors-based 
clustering with 
memoryless state 
changes converging to 
a transition distribution 
(weighted directed 
graph)

◦ Reduce an observation
to a pattern

◦ Remember patterns seen 
(across time or space)

◦ Match new observations
to this set of patterns

◦ Computationally more
feasible than k-means
clustering

Like remembering classes of chess 
board configurations across games
played
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 Many machine learning methods exist today, and
many more are being developed every day.

 Methods come with certain assumptions that
must be met.
◦ Breaking assumptions can lead to poor model fit or

incorrect inference.
◦ Matching a method to a problem not only can help with

better prediction and inference; it can also lead to faster 
computation times and better presentations to clients.

 Development depends on problem-matching and 
deep understanding of the mathematics behind
the methods used.
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NOTES

2. } Many machine learning methods exist in the literature and in industry. ◦ What works well for 
one problem may not work well for the next problem. ◦ In addition to poor model fit, an incorrect 
application of methods can lead to incorrect inference. � Implications for data-driven business 
decisions. � Low future confidence in data science and its results. � Lower quality software 
products. } Understanding the intuition and mathematics behind these methods can ameliorate 
these problems. ◦ This talk focuses on building intuition. ◦ Links to theoretical papers underlying 
each method. 
3. } Total variance of a normally- distributed outcome as cookie jar. } Error as empty space. }
Predictors accounting for pieces of the total variance as cookies. ◦ Based on relationship to 
predictor and to each other. � Cookies accounting for the same piece of variance as those 
smooshed together. } Many statistical assumptions need to be met. www.zelcoviacookies.com 
4. } Extends multiple regression. ◦ Many types of outcome distributions. ◦ Transform an outcome 
variable to create a linear relationship with predictors. } Sort of like silly putty stretching the 
outcome variable in the data space. } Does not work on high- dimensional data where predictors > 
observations. } Only certain outcome distributions. ◦ Exponential family as example. 
tomstock.photoshelter.com 
5. } Impose size and/or variable overlap constraints (penalties) on generalized linear models. ◦
Elastic net as hybrid of these constraints. ◦ Can handle large numbers of predictors. } Reduce the 
number of predictors. ◦ Shrink some predictor estimates to 0. ◦ Examine sets of similar predictors. 
} Similar to eating irrelevant cookies in the regression cookie jar or a cowboy at the origin roping 
coefficients that get too close 
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6. Homotopy arrow example ◦ Red and blue arrows can be deformed into each other by wiggling and 
stretching the line path with anchors at start and finish of line ◦ Yellow arrow crosses holes and 
would need to backtrack or break to the surface to freely wiggle into the blue or red line }
Homotopy method in LASSO/LARS wiggles an easy regression path into an optimal regression path ◦
Avoids obstacles that can trap other regression estimators (peaks, valleys, saddles…) } Homotopy as 
path equivalence ◦ Intrinsic property of topological spaces (such as data manifolds) 
7. } Instead of fitting model to data, fit model to tangent space (what isn’t the data). ◦ Deals with 
collinearity, as parallel vectors share a tangent space (only one selected of collinear group). ◦ LASSO 
and LARS extensions. ◦ Rao scoring for selection. � Effect estimates (angles). � Model selection
criteria. � Information criteria. � Deviance scoring. 
8. } Fit all possible models and figure out likelihood of each given observed data. ◦ Based on Bayes’ 
Theorem and conditional probability. ◦ Instead of giving likelihood that data came from a specific 
parameterized population (univariate), figure out likelihood of set of data coming from sets of 
population (multivariate). ◦ Can select naïve prior (no assumptions on model or population) or make 
an informed guess (assumptions about population or important factors in model). ◦ Combine 
multiple models according to their likelihoods into a blended model given data. 
9. Semi-Parametric Extensions of Regression
10. } Extends a generalized linear models by estimating unknown (nonlinear) functions of an 
outcome on intervals of a predictor. } Use of “knots” to break function into intervals. } Similar to a 
downhill skier. ◦ Slope as a function of outcome. ◦ Skier as spline. ◦ Flags as knots anchoring the skier 
as he travels down the slope. www.dearsportsfan.com 
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11. } Multivariate adaptive regression splines as an extension of spline models to multivariate data ◦
Knots placed according to multivariate structure and splines fit between knots ◦ Much like fixing a rope 
to the peaks and valleys of a mountain range, where the rope has enough slack to hug the terrain 
between its fixed points 
12. } Extends spline models to the relationships of many predictors to an outcome. ◦ Also allows for a 
“silly- putty” transformation of the outcome variable. } Like multiple skiers on many courses and 
mountains to estimate many relationships in the dataset. www.filigreeinn.com 
13. } Chop data into partitions and then fit multiple regression models to each partition. } Divide-and-
conquer approach. } Examples: ◦ Multivariate adaptive regression splines ◦ Regression trees ◦ Morse-
Smale regression www.pinterest.com 
14. } Based on a branch of math called topology. ◦ Study of changes in function behavior on shapes. ◦
Used to classify similarities/ differences between shapes. ◦ Data clouds turned into discrete shape 
combinations (simplices). } Use these principles to partition data and fit elastic net models to each 
piece. ◦ Break data into multiple toy sets. ◦ Analyze sets for underlying properties of each toy. } Useful
visual output for additional data mining. 
15. } Linear or non-linear support beams used to separate group data for classification or map data for 
kernel- based regression. } Much like scaffolding and support beams separating and holding up parts 
of a high rise. http://en.wikipedia.org/wiki/Support_vector_machine leadertom.en.ec21.com 
16. } Based on processing complex, nonlinear information the way the human brain does via a series 
of feature mappings. colah.github.io www.alz.org Arrows denote mapping functions, which take one 
topological space to another 
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17. } Type of shallow, wide neural network. } Reduces framework to a penalized linear algebra problem, 
rather than iterative training (much faster to solve). } Based on random mappings. } Shown to converge to 
correct classification/regression (universal approximation property—may require unreasonably wide 
networks). } Semi-supervised learning extensions. 
18. } Added layers in neural network to solve width problem in single-layer networks for universal 
approximation. } More effective in learning features of the data. } Like sifting data with multiple sifters to 
distill finer and finer pieces of the data. } Computationally intensive and requires architecture design and 
optimization. 
19. } Recent extension of deep learning framework from spreadsheet data to multiple simultaneous 
spreadsheets ◦ Spreadsheets may be of the same dimension or different dimensions ◦ Could process multiple 
or hierarchical networks via adjacency matrices } Like sifting through data with multiple inputs of varying sizes 
and textures 

20. CHAPTER 3 
21. } Classifies data according to optimal partitioning of data (visualized as a high- dimensional cube). } Slices 
data into squares, cubes, and hypercubes (4+ dimensional cubes). ◦ Like finding the best place to cut through 
the data with a sword. } Option to prune tree for better model (glue some of the pieces back together). }
Notoriously unstable. } Optimization possible to arrive at best possible trees (genetic algorithms). tvtropes.org 
22. } Optimization technique. ◦ Minimize a loss function in regression. } Accomplished by choosing a variable 
per step that achieves largest minimization. } Climber trying to descend a mountain. ◦ Minimize height above 
sea level per step. } Directions (N, S, E, W) as a collection of variables. } Climber rappels down cliff according 
to these rules. www.chinatravelca.com 
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23. } Optimization helpers. ◦ Find global maximum or minimum by searching many areas simultaneously. 
◦ Can impose restrictions. } Teams of mountain climbers trying to find the summit. } Restrictions as 
climber supplies, hours of daylight left to find summit… } Genetic algorithm as population of mountain 
climbers each climbing on his/her own. wallpapers.brothersoft.com 
24. } One climber exploring multiple routes simultaneously. } Individual optimized through a series of 
gates at each update until superposition converges on one state ◦ Say wave 2 is the optimal combination 
of predictors ◦ Resultant combination slowly flattens to wave 2, with the states of wave 1disappearing 
http://philschatz.com/physics -book/contents/m42249.html 
25. } Combine multiple models of the same type (ex. trees) for better prediction. ◦ Single models 
unstable. � Equally-good estimates from different models. ◦ Use bootstrapping. � Multiple “marble 
draws” followed by model creation. ◦ Creates diversity of features. ◦ Creates models with different biases
and error. 
26. } Uses gradient descent algorithm to model an outcome based on predictors (linear, tree, spline…). ◦
Proceeds in steps, adding variables and adjusting weights according to the algorithm. } Like putting 
together a puzzle. ◦ Algorithm first focuses on most important parts of the picture (such as the Mona 
Lisa’s eyes). ◦ Then adds nuances that help identify other missing pieces (hands, landscape…). 
play.google.com 
27. } Adds a penalty term to boosted regression ◦ Can be formulated as LASSO/ridge regression/elastic 
net with constraints ◦ Also leverages hardware to further speed up boosting ensemble play.google.com 
28. } Single tree models poor predictors. } Grow a forest of them for a strong predictor (another 
ensemble method). } Algorithm: ◦ Takes random sample of data. ◦ Builds one tree. ◦ Repeats until forest 
grown. ◦ Averages across forest to identify strong predictors. 
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29. CHAPTER 4 
30. } Principle Component Analysis (PCA) ◦ Variance partitioning to combine pieces of variables into 
new linear subspace. ◦ Smashing cookies by kind and combining into a flat hybrid cookie in previous 
regression model. } Manifold Learning ◦ PCA-like algorithms that combine pieces into a new nonlinear 
subspace. ◦ Non-flat cookie combining. } Useful as pre-processing step for prediction models. ◦
Reduce dimension. ◦ Obtain uncorrelated, non- overlapping variables (bases). 
marmaladeandmileposts. com 
31. } Balanced sampling for low-frequency predictors. ◦ Stratified samples (i.e. sample from bag of 
mostly white marbles and few red marbles with constraint that 1/5th of draws must be red marbles). 
} Dimension reduction/mapping pre-processing ◦ Principle component, manifold learning… ◦ Hybrid 
of neural network methods and tree models. 
32. } Aggregation of multiple types of models. ◦ Like a small town election. ◦ Different people have 
different views of the politics and care about different issues. } Different modeling methods capture 
different pieces of the data and vote in different pieces. ◦ Leverage strengths, minimize weaknesses ◦
Diversity of methods to better explore underlying data geometry } Avoids multiple testing issues. 
33. } Subsembles ◦ Partition data into training sets � Randomly selected or through partition 
algorithm ◦ Train a model on each data partition ◦ Combine into final weighted prediction model }
This is similar to national elections. ◦ Each elector in the electoral college learns for whom his 
constituents voted. ◦ The final electoral college pools these individual votes. Full Training Dataset 
Model Training Datasets 1, 2, 3, 4 Final Subsemble Model 
34. } Combines superlearning and subsembles for better prediction ◦ Diversity improves subsemble
method (better able to explore data geometry) ◦ Bootstrapping improves superlearner pieces (more 
diversity within each method) ◦ Preliminary empirical evidence shows efficacy of combination. 
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35. CHAPTER 5 
36. } Classification of a data point based on the classification of its nearest neighboring points. } Like a 
junior high lunchroom and student clicks. ◦ Students at the same table tend to be more similar to each 
other than to a distant table. www.wrestlecrap.com 
37. } Iteratively separating groups within a dataset based on similarity. } Like untangling tangled balls of 
yarn into multiple, single- colored balls (ideally). ◦ Each step untangles the mess a little further. ◦ Few 
stopping guidelines (when it looks separated). krazymommakreations.blogspot.com 
38. } Hybrid of supervised and unsupervised learning (groupings and prediction). } Uses graphical 
representation of data and its relationships. } Algorithms with connections to topology, differential 
geometry, and Markov chains. } Useful in combination with other machine learning methods to provide 
extra insight (ex. spectral clustering). 
39. } K-means algorithm with weighting and dimension reduction components of similarity measure. ◦
Simplify balls of string to warm colors and cool colors before untangling. } Can be reformulated as a graph 
clustering problem. ◦ Partition subcomponents of a graph based on flow equations. 
www.simplepastimes.com 
40. } Multivariate technique similar to mode or density clustering. ◦ Find peaks and valleys in data 
according to an input function on the data (level set slices)— much like a watershed on mountains. ◦
Separate data based on shared peaks and valleys across slices (shared multivariate density/gradient). ◦
Many nice theoretical developments on validity and convergence. 
41. } Topological clustering. ◦ Define distance metric. ◦ Slice multidimensional dataset with Morse 
function. ◦ Examine function behavior across slice. ◦ Cluster function behavior. ◦ Iterate through multiple 
slices to obtain hierarchy of function behavior. } Much like examining the behavior of multiple objects 
across a flip book. ◦ Nesting ◦ Cluster overlap Filtered functions then used to create various resolutions of 
a modified Reeb graph summary of topology. 
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42. Time Series Forecasting
43. } Similar to decomposing superposed states ◦ Seasonal trends ◦ Yearly trends ◦ Trend averages ◦
Dependencies on previous time point } Knit individual forecasted pieces into a complete forecast by 
superposing these individual forecasts } Several extensions to neural networks, time- lagged machine 
learning models… 
44. } A time-series method incorporating predictors ◦ Constant predictors at initial time point ◦ Varying 
predictors at multiple time points } Creates a sort of correlation web between predictors and time 
points ◦ Can handle multiple time lags and multivariate outcomes ◦ Can handle any GLM outcome links 
} Related to partial differential equations of dynamic systems 
45. } Data-based mining for SEM relationships/time-lag components ◦ Leverages conditional 
probability between predictors to find dependencies ◦ Does not require a priori model formulation like 
SEM } Peeking at data to create a dependency web over time or predictors/outcome } Can be 
validated by a follow-up SEM based on network structure Time 1 Outcome Predictor 2 Time 2 
Outcome Time 3 Outcome 
46. } Technically: ◦ Matrix decomposition (similar to PCA/manifold learning) ◦ Followed by spectral 
methods ◦ Cleaning of time-lagged covariance matrix ◦ Reconstruction with simple forecast } Kind of 
like deconstructing, cleaning, a rebuilding a car engine 
47. } Combines k-nearest neighbors-based clustering with memoryless state changes converging to a 
transition distribution (weighted directed graph) ◦ Reduce an observation to a pattern ◦ Remember 
patterns seen (across time or space) ◦ Match new observations to this set of patterns ◦
Computationally more feasible than k-means clustering Like remembering classes of chess board 
configurations across games played 
48. } Many machine learning methods exist today, and many more are being developed every day. }
Methods come with certain assumptions that must be met. ◦ Breaking assumptions can lead to poor 
model fit or incorrect inference. ◦ Matching a method to a problem not only can help with better 
prediction and inference; it can also lead to faster computation times and better presentations to 
clients. } Development depends on problem-matching and deep understanding of the mathematics 
behind the methods used. 
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49. } Parametric Regression: ◦ Draper, N. R., Smith, H., & Pownell, E. (1966). Applied regression analysis (Vol. 3). New York: 
Wiley. ◦ McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16(3), 285-292. ◦ Zou, 
H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series 
B (Statistical Methodology), 67(2), 301-320. ◦ Augugliaro, L., Mineo, A. M., & Wit, E. C. (2013). Differential geometric least 
angle regression: a differential geometric approach to sparse generalized linear models. Journal of the Royal Statistical 
Society: Series B (Statistical Methodology), 75(3), 471-498. ◦ Raftery, A. E., Madigan, D., & Hoeting, J. A. (1997). Bayesian 
model averaging for linear regression models. Journal of the American Statistical Association, 92(437), 179-191. ◦ Osborne, 
M. R., & Turlach, B. A. (2011). A homotopy algorithm for the quantile regression lasso and related piecewise linear 
problems. Journal of Computational and Graphical Statistics, 20(4), 972-987. ◦ Drori, I., & Donoho, D. L. (2006, May). 
Solution of l 1 minimization problems by LARS/homotopy methods. In Acoustics, Speech and Signal Processing, 2006. 
ICASSP 2006 Proceedings. 2006 IEEE International Conference on (Vol. 3, pp. III-III). IEEE. 
50. } Semi-Parametric Regression: ◦ Marsh, L. C., & Cormier, D. R. (2001). Spline regression models (Vol. 137). Sage. ◦ Hastie, 
T., & Tibshirani, R. (1986). Generalized additive models. Statistical science, 297-310. ◦ McZgee, V. E., & Carleton, W. T. 
(1970). Piecewise regression. Journal of the American Statistical Association, 65(331), 1109-1124. ◦ Gerber, S., Rübel, O., 
Bremer, P. T., Pascucci, V., & Whitaker, R. T. (2013). Morse– Smale Regression. Journal of Computational and Graphical 
Statistics, 22(1), 193- 214. ◦ Hearst, M. A., Dumais, S. T., Osman, E., Platt, J., & Scholkopf, B. (1998). Support vector 
machines. Intelligent Systems and their Applications, IEEE, 13(4), 18-28. ◦ Hornik, K., Stinchcombe, M., & White, H. (1989). 
Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366. ◦ Krizhevsky, A., Sutskever, I., 
& Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information 
processing systems (pp. 1097-1105). ◦ Huang, G. B., Wang, D. H., & Lan, Y. (2011). Extreme learning machines: a survey. 
International Journal of Machine Learning and Cybernetics, 2(2), 107-122. ◦ Friedman, J. H. (1991). Multivariate adaptive 
regression splines. The annals of statistics, 1-67. ◦ Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & 
Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint 
arXiv:1603.04467. 
51. } Nonparametric Regression: ◦ Buntine, W. (1992). Learning classification trees. Statistics and computing, 2(2), 63-73. ◦
Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367-378. ◦ Bäck, T. 
(1996). Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. 
Oxford university press. ◦ Zhang, G. (2011). Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal 
of Heuristics, 17(3), 303-351. ◦ Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems 
(pp. 1-15). Springer Berlin Heidelberg. ◦ Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data 
Analysis, 38(4), 367-378. ◦ Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. ◦ Chen, T., & Guestrin, C. 
(2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference 
on knowledge discovery and data mining (pp. 785-794). ACM. 

58

https://image.slidesharecdn.com/b2b5be70-1018-4fec-b133-56a49c5517f2-160304215922/95/machine-learning-by-analogy-49-638.jpg?cb=1500912635
https://image.slidesharecdn.com/b2b5be70-1018-4fec-b133-56a49c5517f2-160304215922/95/machine-learning-by-analogy-50-638.jpg?cb=1500912635
https://image.slidesharecdn.com/b2b5be70-1018-4fec-b133-56a49c5517f2-160304215922/95/machine-learning-by-analogy-51-638.jpg?cb=1500912635


52. } Supervised with Unsupervised Methods: ◦ van der Maaten, L. J., Postma, E. O., & van den 
Herik, H. J. (2009). Dimensionality reduction: A comparative review. Journal of Machine Learning 
Research, 10(1-41), 66-71. ◦ Kuncheva, L. I., & Rodríguez, J. J. (2007). An experimental study on 
rotation forest ensembles. In Multiple Classifier Systems (pp. 459-468). Springer Berlin 
Heidelberg. ◦ van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner. Statistical 
applications in genetics and molecular biology, 6(1). ◦ Sapp, S. K. (2014). Subsemble: A Flexible 
Subset Ensemble Prediction Method (Doctoral dissertation, University of California, Berkeley). 
53. } Unsupervised Methods: ◦ Fukunaga, K., & Narendra, P. M. (1975). A branch and bound 
algorithm for computing k-nearest neighbors. Computers, IEEE Transactions on, 100(7), 750-753. 
◦ MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate 
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and 
probability (Vol. 1, No. 14, pp. 281-297). ◦ Chartrand, G., & Oellermann, O. R. (1993). Applied and 
algorithmic graph theory. ◦ Ng, A. Y., Jordan, M. I., & Weiss, Y. (2002). On spectral clustering: 
Analysis and an algorithm. Advances in neural information processing systems, 2, 849-856. ◦
Singh, G., Mémoli, F., & Carlsson, G. E. (2007, September). Topological Methods for the Analysis 
of High Dimensional Data Sets and 3D Object Recognition. In SPBG (pp. 91- 100). ◦ Chen, Y. C., 
Genovese, C. R., & Wasserman, L. (2016). A comprehensive approach to mode clustering. 
Electronic Journal of Statistics, 10(1), 210-241. 
54. } Time Series ◦ Wu, J. P., & Wei, S. (1989). Time series analysis. Hunan Science and Technology 
Press, ChangSha. ◦ Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for 
short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1), 95-126. ◦ Dunham, M. H., 
Meng, Y., & Huang, J. (2004, November). Extensible markov model. In Data Mining, 2004. 
ICDM'04. Fourth IEEE International Conference on (pp. 371-374). IEEE. ◦ Ullman, J. B., & Bentler, P. 
M. (2003). Structural equation modeling. John Wiley & Sons, Inc.. ◦ Heckerman, D., Geiger, D., & 
Chickering, D. M. (1994, July). Learning Bayesian networks: The combination of knowledge and 
statistical data. In Proceedings of the Tenth international conference on Uncertainty in artificial 
intelligence (pp. 293-301). Morgan Kaufmann Publishers Inc.. 
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