# Machine Learning by Analogy (Updated) 

Colleen M. Farrelly

## Overview of Problem

- Many machine learning methods exist in the literature and in industry.
- What works well for one problem may not work well for the next problem.
- In addition to poor model fit, an incorrect application of methods can lead to incorrect inference.
- Implications for data-driven business decisions.
- Low future confidence in data science and its results.
- Lower quality software products.
- Understanding the intuition and mathematics behind these methods can ameliorate these problems.
- This talk focuses on building intuition.
- Links to theoretical papers underlying each method.


## PLAN

- Régressions paramétriques et extensions
- Régressions semi paramétriques et extensions
- Régressions non paramétriques via méthodes d'optimisation
- Combinaisons de méthodes supervisées et non supervisées
- Apprentissage non supervisé
- Séries chronologiques


## Multiple Regression

- Total variance of a normallydistributed outcome as cookie jar.
- Error as empty space.
- Predictors accounting for pieces of the total variance as cookies.
- Based on relationship to predictor and to each other.
- Cookies accounting for the same piece of variance as those smooshed together.
- Many statistical assumptions need to be met.


## Generalized Linear Models


tomstock.photoshelter.com

- Extends multiple regression.
- Many types of outcome distributions.
- Transform an outcome variable to create a linear relationship with predictors.
- Sort of like silly putty stretching the outcome variable in the data space.
- Does not work on highdimensional data where predictors > observations.
- Only certain outcome distributions.
- Exponential family as example.


## LASSO, Ridge Regession, and Elastic Net

- Impose size and/or variable overlap constraints (penalties) on generalized linear models.
- Elastic net as hybrid of these constraints.
- Can handle large numbers of predictors.
- Reduce the number of predictors.
- Shrink some predictor estimates to 0.

- Examine sets of similar predictors.
- Similar to eating irrelevant cookies in the regression cookie jar or a cowboy at the origin roping coefficients that get too close



## Homotopy-Based LASSO/LARS

- Homotopy as path equivalence Intrinsic property of topological spaces (such as data manifolds)

- Homotopy arrow example Red and blue arrows can be deformed into each other by wiggling and stretching the line path with anchors at start and finish of line
- Yellow arrow crosses holes and would need to backtrack or break to the surface to freely wiggle into the blue or red line
- Homotopy method in LASSO / LARS wiggles an easy regression path into an optimal regression path
- Avoids obstacles that can trap other regression estimators (peaks, valleys, saddles...)


## Differential Geometry and Regression

- Instead of fitting model to data, fit model to tangent space (what isn't the data).
- Deals with collinearity, as parallel vectors share a tangent space (only one selected of collinear group).
- LASSO and LARS extensions.
- Rao scoring for selection.
- Effect estimates (angles).
- Model selection criteria.
- Information criteria.
- Deviance scoring.



## Bayesian Regression Models




- Fit all possible models and figure out likelihood of each given observed data.
- Based on Bayes' Theorem and conditional probability.
- Instead of giving likelihood that data came from a specific parameterized population (univariate), figure out likelihood of set of data coming from sets of population (multivariate).
- Can select naïve prior (no assumptions on model or population) or make an informed guess (assumptions about population or important factors in model).
- Combine multiple models according to their likelihoods into a blended model given data.


## CHAPTER 2

## Semi-Parametric Extensions of Regression

## Spline Models

- Extends a generalized linear models by estimating unknown (nonlinear) functions of an outcome on intervals of a predictor.
- Use of "knots" to break function into intervals.
- Similar to a downhill skier.
- Slope as a function of outcome.
- Skier as spline.
- Flags as knots anchoring the

www.dearsportsfan.com skier as he travels down the slope.


## MARS

- Multivariate adaptive regression splines as an extension of spline models to multivariate
data
- Knots placed according to multivariate structure and splines fit between knots
- Much like fixing a rope to the peaks and valleys of a mountain range, where the rope has enough slack to hug the terrain between its fixed points



## Generalized Additive Models


www.filigreeinn.com

- Extends spline models to the relationships of many predictors to an outcome.
- Also allows for a "sillyputty" transformation of the outcome variable.
- Like multiple skiers on many courses and mountains to estimate many relationships in the dataset.


## Piece-Wise Regression

- Chop data into partitions and then fit multiple regression models to each partition.
- Divide-and-conquer approach.
- Examples:
- Multivariate adaptive regression splines
- Regression trees
- Morse-Smale regression


## Morse-Smale Regression

- Based on a branch of math called topology.
- Study of changes in function behavior on shapes.
- Used to classify similarities/
 differences between shapes.
- Data clouds turned into discrete shape combinations (simplices).
- Use these principles to partition data and fit elastic net models to each piece.
- Break data into multiple toy sets.
- Analyze sets for underlying properties of each toy.
- Useful visual output for additional data mining.



## Support Vector Regression

- Linear or non-linear support beams used to separate group data for classification or map data for kernel- based regression.



## Neural Networks


www.alz.org

Arrows denote mapping functions, which take one topological space to another

- Based on processing complex, nonlinear information the way the human brain does via a series of feature mappings.

colah.github.io


## Extreme Learning Machines

- Type of shallow, wide neural network.
- Reduces framework to a penalized linear algebra problem, rather than iterative training (much faster to solve).
- Based on random mappings.
- Shown to converge to correct classification/regression (universal approximation property-may require unreasonably wide networks).
- Semi-supervised learning extensions.



## Deep Learning

- Added layers in neural network to solve width problem in single-layer networks for universal approximation.
- More effective in learning features of the data.
- Like sifting data with multiple sifters to distill finer and finer pieces of the data.
- Computationally intensive and requires architecture design and optimization.


## Tensor Flow

- Recent extension of deep learning framework from spreadsheet data to multiple simultaneous spreadsheets
- Spreadsheets may be of the same dimension or different dimensions
- Could process multiple or hierarchical networks via adjacency matrices
- Like sifting through data with multiple inputs of varying sizes and textures


CHAPTER 3
Nonparametric Regression via Optimization Methods

## Single Decision Tree Models


tvtropes.org

- Classifies data according to optimal partitioning of data (visualized as a highdimensional cube).
- Slices data into squares, cubes, and hypercubes (4+ dimensional cubes).
- Like finding the best place to cut through the data with a sword.
- Option to prune tree for better model (glue some of the pieces back together).
- Notoriously unstable.
- Optimization possible to arrive at best possible trees (genetic algorithms).


## Gradient Descent Methods

- Optimization technique.
- Minimize a loss function in regression.
- Accomplished by choosing a variable per step that achieves largest minimization.
- Climber trying to descend a mountain.
- Minimize height above sea level per step.
- Directions (N, S, E, W) as a collection of variables.

www.chinatravelca.com
- Climber rappels down cliff according to these rules.


## Genetic Algorithms

- Optimization helpers.

wallpapers.brothersoft.com

- Find global maximum or minimum by searching many areas simultaneously.
- Can impose restrictions.
- Teams of mountain climbers trying to find the summit.
- Restrictions as climber supplies, hours of daylight left to find summit...
- Genetic algorithm as population of mountain climbers each climbing on his/her own.


## Quantum Evolutionary Models

- One climber exploring multiple routes simultaneously.

- Individual optimized through a series of gates at each update until superposition converges on one state
- Say wave 2 is the optimal combination of predictors
- Resultant combination slowly flattens to wave 2 , with the states of wave ldisappearing



## Ensemble Methods

- Combine multiple models of the same type (ex. trees) for better prediction.
- Single models unstable.
- Equally-good estimates from different models.
- Use bootstrapping.
- Multiple "marble draws" followed by model creation.
- Creates diversity of features.
- Creates models with different biases and error.



## Boosted Regression Models


play.google.com

- Uses gradient descent algorithm to model an outcome based on predictors (linear, tree, spline...).
- Proceeds in steps, adding variables and adjusting weights according to the algorithm.
- Like putting together a puzzle.
- Algorithm first focuses on most important parts of the picture (such as the Mona Lisa's eyes).
- Then adds nuances that help identify other missing pieces (hands, landscape...).


## XGBoost

- Adds a penalty term to boosted regression
- Can be formulated as LASSO/ridge regression/elastic net with constraints
- Also leverages hardware to further speed up boosting ensemble

play.google.com


## Random Forests: Multiple Trees

- Single tree models poor predictors.
- Grow a forest of them for a strong predictor (another ensemble method).
- Algorithm:
- Takes random sample of data.
- Builds one tree.
- Repeats until forest grown.
- Averages across forest to identify strong predictors.



## CHAPTER 4

## Combining Supervised and Unsupervised Methods

## Dimension Reduction

- Principle Component Analysis (PCA)
- Variance partitioning to combine pieces of variables into new linear subspace.
- Smashing cookies by kind and combining into a flat hybrid cookie in previous regression model.
- Manifold Learning
- PCA-like algorithms that combine pieces into a new nonlinear subspace.
- Non-flat cookie combining.
- Useful as pre-processing step for prediction models.
- Reduce dimension.
- Obtain uncorrelated, nonoverlapping variables (bases).


## Random Forest as Extension

## Example

- Balanced sampling for low-frequency predictors.
- Stratified samples (i.e. sample from bag of mostly white marbles and few red marbles with constraint that $1 / 5^{\text {th }}$ of draws must be red marbles).
- Dimension reduction/mapping pre-processing
- Principle component, manifold learning...
- Hybrid of neural network methods and tree models.

$+$



## Superlearners



- Aggregation of multiple types of models.
- Like a small town election.
- Different people have different views of the politics and care about different issues.
- Different modeling methods capture different pieces of the data and vote in different pieces.
- Leverage strengths, minimize weaknesses
- Diversity of methods to better explore underlying data geometry
- Avoids multiple testing issues.


## Subsembles

- Subsembles
- Partition data into training sets
- Randomly selected or through partition algorithm
- Train a model on each data partition
- Combine into final weighted prediction model
- This is similar to national elections.
- Each elector in the electoral college learns for whom his constituents voted.
- The final electoral college pools these individual votes.

Full Training Dataset


Model Training
Datasets 1, 2, 3, 4


Final Subsemble Model

## Supersemble



- Combines
superlearning and subsembles for better prediction
- Diversity improves subsemble method (better able to explore data geometry)
- Bootstrapping improves superlearner pieces (more diversity within each method)
- Preliminary empirical evidence shows efficacy of combination.


## CHAPTER 5

## Unsupervised Learning

## K Nearest Neighbors

Classification of a data point based on the classification of its nearest neighboring points.

- Like a junior high lunchroom and student clicks.
- Students at the same table tend to be more similar to each other

www.wrestlecrap.com than to a distant table.


## K-Means Clustering

- Iteratively separating groups within a dataset based on similarity.
- Like untangling tangled balls of yarn into multiple, singlecolored balls (ideally).
- Each step untangles the mess a little further.
- Few stopping guidelines (when it looks separated).


## Graph-Based Techniques

- Hybrid of supervised and unsupervised learning (groupings and prediction).
- Uses graphical representation of data and its relationships.
- Algorithms with connections to topology, differential geometry, and Markov chains.
- Useful in combination with other machine learning methods to provide extra insight (ex. spectral clustering).



## Spectral Clustering

- K-means algorithm with weighting and dimension reduction components of similarity measure.
- Simplify balls of string to warm colors and cool colors before untangling.
- Can be reformulated as a graph clustering problem.
- Partition subcomponents of

www.simplepastimes.com a graph based on flow equations.


## Morse-Smale Mode Clustering

Reeb Graph/Contour TreeiMerge Tree


- Multivariate technique similar to mode or density clustering.

Find peaks and valleys in data according to an input function on the data (level set slices)much like a watershed on mountains.


- Separate data based on shared peaks and valleys across slices (shared multivariate density/gradient).
- Many nice theoretical developments on validity and convergence.


## Mapper Clustering

- Topological clustering.
- Define distance metric.
- Slice multidimensional dataset with Morse function.
- Examine function behavior across slice.
- Cluster function behavior.
- Iterate through multiple slices to obtain hierarchy of function
 behavior.
- Much like examining the behavior of multiple objects across a flip book.
- Nesting
- Cluster overlap

Filtered functions then used to create various resolutions of a modified Reeb graph summary of topology.

## CHAPTER 6

## Time Series Forecasting

## ARIMA Models



- Similar to decomposing
superposed states
- Seasonal trends
- Yearly trends
- Trend averages
- Dependencies on previous time point
- Knit individual forecasted pieces into a complete forecast by superposing these individual forecasts
- Several extensions to neural networks, timelagged machine learning models...


## Structural Equation Models (SEM)

- A time-series method incorporating predictors
- Constant predictors at initial time point
- Varying predictors at multiple time points
- Creates a sort of correlation web between predictors and time points
- Can handle multiple time lags and multivariate outcomes
- Can handle any GLM outcome links
- Related to partial differential equations of dynamic systems



## Bayesian Networks

- Data-based mining for SEM

relationships/time-lag components
- Leverages conditional probability between predictors to find dependencies
- Does not require a priori model formulation like SEM
- Peeking at data to create a dependency web over time or predictors/outcome Can be validated by a follow-up SEM based on network structure


## Singular Spectrum Analysis

- Technically:
- Matrix decomposition (similar to PCA/manifold learning)
- Followed by spectral methods

- Cleaning of time-lagged covariance matrix
- Reconstruction with simple forecast
- Kind of like deconstructing, cleaning, a rebuilding a car engine



## Extensible Markov Models



- Combines k-nearest neighbors-based clustering with memoryless state changes converging to a transition distribution (weighted directed graph)
- Reduce an observation to a pattern
- Remember patterns seen (across time or space)
- Match new observations to this set of patterns
- Computationally more feasible than $k$-means clustering


## Conclusions

- Many machine learning methods exist today, and many more are being developed every day.
- Methods come with certain assumptions that must be met.
- Breaking assumptions can lead to poor model fit or incorrect inference.
- Matching a method to a problem not only can help with better prediction and inference; it can also lead to faster computation times and better presentations to clients.
- Development depends on problem-matching and deep understanding of the mathematics behind the methods used.


# Machine Learning by Analogy by Colleen Farrelly 

https://www.slideshare.net/ColleenFarrelly/machine-learning-by-analogy-59094152

## NOTES

2. \} Many machine learning methods exist in the literature and in industry. ${ }^{\circ}$ What works well for one problem may not work well for the next problem. ${ }^{\circ}$ In addition to poor model fit, an incorrect application of methods can lead to incorrect inference. $\square$ Implications for data-driven business decisions. $\square$ Low future confidence in data science and its results. $\square$ Lower quality software products. \} Understanding the intuition and mathematics behind these methods can ameliorate these problems. ${ }^{\circ}$ This talk focuses on building intuition. $\circ$ Links to theoretical papers underlying each method.
3. \} Total variance of a normally- distributed outcome as cookie jar. \} Error as empty space. \} Predictors accounting for pieces of the total variance as cookies. $\circ$ Based on relationship to predictor and to each other. $\square$ Cookies accounting for the same piece of variance as those smooshed together. \} Many statistical assumptions need to be met. www.zelcoviacookies.com 4. \} Extends multiple regression. ${ }^{\circ}$ Many types of outcome distributions. ${ }^{\circ}$ Transform an outcome variable to create a linear relationship with predictors. \} Sort of like silly putty stretching the outcome variable in the data space. \} Does not work on high- dimensional data where predictors > observations. \} Only certain outcome distributions. ${ }^{\circ}$ Exponential family as example. tomstock.photoshelter.com
4. \} Impose size and/or variable overlap constraints (penalties) on generalized linear models. ${ }^{\circ}$ Elastic net as hybrid of these constraints. ${ }^{\circ}$ Can handle large numbers of predictors. \} Reduce the number of predictors. ${ }^{\circ}$ Shrink some predictor estimates to 0 . ${ }^{\circ}$ Examine sets of similar predictors. \} Similar to eating irrelevant cookies in the regression cookie jar or a cowboy at the origin roping coefficients that get too close
5. Homotopy arrow example $\cdot$ Red and blue arrows can be deformed into each other by wiggling and stretching the line path with anchors at start and finish of line $\circ$ Yellow arrow crosses holes and would need to backtrack or break to the surface to freely wiggle into the blue or red line \} Homotopy method in LASSO/LARS wiggles an easy regression path into an optimal regression path。 Avoids obstacles that can trap other regression estimators (peaks, valleys, saddles...) \} Homotopy as path equivalence $\circ$ Intrinsic property of topological spaces (such as data manifolds)
6. $\}$ Instead of fitting model to data, fit model to tangent space (what isn't the data). $\circ$ Deals with collinearity, as parallel vectors share a tangent space (only one selected of collinear group). ${ }^{\circ}$ LASSO and LARS extensions. ${ }^{\circ}$ Rao scoring for selection. $\square$ Effect estimates (angles). $\square$ Model selection criteria. $\square$ Information criteria. $\square$ Deviance scoring.
7. $\}$ Fit all possible models and figure out likelihood of each given observed data. $\circ$ Based on Bayes' Theorem and conditional probability. $\circ$ Instead of giving likelihood that data came from a specific parameterized population (univariate), figure out likelihood of set of data coming from sets of population (multivariate). ${ }^{\circ}$ Can select naïve prior (no assumptions on model or population) or make an informed guess (assumptions about population or important factors in model). ${ }^{\circ}$ Combine multiple models according to their likelihoods into a blended model given data.

## 9. Semi-Parametric Extensions of Regression

10. \} Extends a generalized linear models by estimating unknown (nonlinear) functions of an outcome on intervals of a predictor. \} Use of "knots" to break function into intervals. \} Similar to a downhill skier. ${ }^{\circ}$ Slope as a function of outcome. ${ }^{\circ}$ Skier as spline. ${ }^{\circ}$ Flags as knots anchoring the skier as he travels down the slope. www.dearsportsfan.com
11. \} Multivariate adaptive regression splines as an extension of spline models to multivariate data。 Knots placed according to multivariate structure and splines fit between knots $\circ$ Much like fixing a rope to the peaks and valleys of a mountain range, where the rope has enough slack to hug the terrain between its fixed points
12.\} Extends spline models to the relationships of many predictors to an outcome. ${ }^{\circ}$ Also allows for a "silly-putty" transformation of the outcome variable. \} Like multiple skiers on many courses and mountains to estimate many relationships in the dataset. www.filigreeinn.com
12. \} Chop data into partitions and then fit multiple regression models to each partition. \} Divide-andconquer approach. \} Examples: $\circ$ Multivariate adaptive regression splines $\circ$ Regression trees $\circ$ MorseSmale regression www.pinterest.com
13. $\}$ Based on a branch of math called topology. ${ }^{\circ}$ Study of changes in function behavior on shapes. ${ }^{\circ}$ Used to classify similarities/ differences between shapes. ${ }^{\circ}$ Data clouds turned into discrete shape combinations (simplices). $\}$ Use these principles to partition data and fit elastic net models to each piece. ${ }^{\circ}$ Break data into multiple toy sets. ${ }^{\circ}$ Analyze sets for underlying properties of each toy. $\}$ Useful visual output for additional data mining.
14. ) Linear or non-linear support beams used to separate group data for classification or map data for kernel- based regression. \} Much like scaffolding and support beams separating and holding up parts of a high rise. http://en.wikipedia.org/wiki/Support_vector_machine leadertom.en.ec21.com
15. \} Based on processing complex, nonlinear information the way the human brain does via a series of feature mappings. colah.github.io www.alz.org Arrows denote mapping functions, which take one topological space to another
16. \} Type of shallow, wide neural network. \} Reduces framework to a penalized linear algebra problem, rather than iterative training (much faster to solve). \} Based on random mappings. \} Shown to converge to correct classification/regression (universal approximation property-may require unreasonably wide networks). \} Semi-supervised learning extensions.
17. \} Added layers in neural network to solve width problem in single-layer networks for universal approximation. \} More effective in learning features of the data. \} Like sifting data with multiple sifters to distill finer and finer pieces of the data. \} Computationally intensive and requires architecture design and optimization.
18. \} Recent extension of deep learning framework from spreadsheet data to multiple simultaneous spreadsheets ${ }^{\circ}$ Spreadsheets may be of the same dimension or different dimensions ${ }^{\circ}$ Could process multiple or hierarchical networks via adjacency matrices \} Like sifting through data with multiple inputs of varying sizes and textures

## 20. CHAPTER 3

21. \} Classifies data according to optimal partitioning of data (visualized as a high-dimensional cube). \} Slices data into squares, cubes, and hypercubes ( $4+$ dimensional cubes). $\circ$ Like finding the best place to cut through the data with a sword. \} Option to prune tree for better model (glue some of the pieces back together). \} Notoriously unstable. \} Optimization possible to arrive at best possible trees (genetic algorithms). tvtropes.org 22. $\}$ per step that achieves largest minimization. \} Climber trying to descend a mountain. $\circ$ Minimize height above sea level per step. \} Directions ( $\mathrm{N}, \mathrm{S}, \mathrm{E}, \mathrm{W}$ ) as a collection of variables. \} Climber rappels down cliff according to these rules. www.chinatravelca.com
22. ) Optimization helpers. $\circ$ Find global maximum or minimum by searching many areas simultaneously.

- Can impose restrictions. \} Teams of mountain climbers trying to find the summit. \} Restrictions as climber supplies, hours of daylight left to find summit... \} Genetic algorithm as population of mountain climbers each climbing on his/her own. wallpapers.brothersoft.com

24. \} One climber exploring multiple routes simultaneously. \} Individual optimized through a series of gates at each update until superposition converges on one state $\circ$ Say wave 2 is the optimal combination of predictors $\circ$ Resultant combination slowly flattens to wave 2 , with the states of wave 1disappearing http://philschatz.com/physics -book/contents/m42249.html
25.\} Combine multiple models of the same type (ex. trees) for better prediction. ${ }^{\circ}$ Single models unstable. $\square$ Equally-good estimates from different models. $\circ$ Use bootstrapping. $\square$ Multiple "marble draws" followed by model creation. $\circ$ Creates diversity of features. ${ }^{\circ}$ Creates models with different biases and error.
25. $\}$ Uses gradient descent algorithm to model an outcome based on predictors (linear, tree, spline...). ${ }^{\circ}$ Proceeds in steps, adding variables and adjusting weights according to the algorithm. \} Like putting together a puzzle. ${ }^{\circ}$ Algorithm first focuses on most important parts of the picture (such as the Mona Lisa's eyes). ${ }^{\circ}$ Then adds nuances that help identify other missing pieces (hands, landscape...). play.google.com
26. \} Adds a penalty term to boosted regression ${ }^{\circ}$ Can be formulated as LASSO/ridge regression/elastic net with constraints ${ }^{\circ}$ Also leverages hardware to further speed up boosting ensemble play.google.com 28. \} Single tree models poor predictors. \} Grow a forest of them for a strong predictor (another ensemble method). \} Algorithm: $\circ$ Takes random sample of data. ${ }^{\circ}$ Builds one tree. $\circ$ Repeats until forest grown. ${ }^{\circ}$ Averages across forest to identify strong predictors.

## 29. CHAPTER 4

30. \} Principle Component Analysis (PCA) • Variance partitioning to combine pieces of variables into new linear subspace. $\circ$ Smashing cookies by kind and combining into a flat hybrid cookie in previous regression model. \} Manifold Learning $\circ$ PCA-like algorithms that combine pieces into a new nonlinear subspace. ${ }^{\circ}$ Non-flat cookie combining. \} Useful as pre-processing step for prediction models. ${ }^{\circ}$ Reduce dimension. ${ }^{\circ}$ Obtain uncorrelated, non- overlapping variables (bases).
marmaladeandmileposts. com
31. \} Balanced sampling for low-frequency predictors. ${ }^{\circ}$ Stratified samples (i.e. sample from bag of mostly white marbles and few red marbles with constraint that $1 / 5$ th of draws must be red marbles).
\} Dimension reduction/mapping pre-processing $\circ$ Principle component, manifold learning... $\circ$ Hybrid of neural network methods and tree models.
32. \} Aggregation of multiple types of models. $\circ$ Like a small town election. $\circ$ Different people have different views of the politics and care about different issues. \} Different modeling methods capture different pieces of the data and vote in different pieces. ${ }^{\circ}$ Leverage strengths, minimize weaknesses $\circ$ Diversity of methods to better explore underlying data geometry \} Avoids multiple testing issues. 33. $\}$ Subsembles $\circ$ Partition data into training sets $\square$ Randomly selected or through partition algorithm $\circ$ Train a model on each data partition ${ }^{\circ}$ Combine into final weighted prediction model $\}$ This is similar to national elections. ${ }^{\circ}$ Each elector in the electoral college learns for whom his constituents voted. ${ }^{\circ}$ The final electoral college pools these individual votes. Full Training Dataset Model Training Datasets 1, 2, 3, 4 Final Subsemble Model
33. \} Combines superlearning and subsembles for better prediction $\circ$ Diversity improves subsemble method (better able to explore data geometry) $\circ$ Bootstrapping improves superlearner pieces (more diversity within each method) $\circ$ Preliminary empirical evidence shows efficacy of combination.

## 35. CHAPTER 5

36. \} Classification of a data point based on the classification of its nearest neighboring points. \} Like a junior high lunchroom and student clicks. ${ }^{\circ}$ Students at the same table tend to be more similar to each other than to a distant table. www.wrestlecrap.com
37. \} Iteratively separating groups within a dataset based on similarity. \} Like untangling tangled balls of yarn into multiple, single- colored balls (ideally). ${ }^{\circ}$ Each step untangles the mess a little further. ${ }^{\circ}$ Few stopping guidelines (when it looks separated). krazymommakreations.blogspot.com 38. $\}$ Hybrid of supervised and unsupervised learning (groupings and prediction). \} Uses graphical representation of data and its relationships. \} Algorithms with connections to topology, differential geometry, and Markov chains. \} Useful in combination with other machine learning methods to provide extra insight (ex. spectral clustering).
38. \} K-means algorithm with weighting and dimension reduction components of similarity measure.。 Simplify balls of string to warm colors and cool colors before untangling. \} Can be reformulated as a graph clustering problem. ${ }^{\circ}$ Partition subcomponents of a graph based on flow equations.
www.simplepastimes.com
39. \} Multivariate technique similar to mode or density clustering. ${ }^{\circ}$ Find peaks and valleys in data according to an input function on the data (level set slices) - much like a watershed on mountains. $\circ$ Separate data based on shared peaks and valleys across slices (shared multivariate density/gradient).。 Many nice theoretical developments on validity and convergence.
40. $\}$ Topological clustering. ${ }^{\circ}$ Define distance metric. ${ }^{\circ}$ Slice multidimensional dataset with Morse function. ${ }^{\circ}$ Examine function behavior across slice. ${ }^{\circ}$ Cluster function behavior. $\circ$ Iterate through multiple slices to obtain hierarchy of function behavior. \} Much like examining the behavior of multiple objects across a flip book. ${ }^{\circ}$ Nesting ${ }^{\circ}$ Cluster overlap Filtered functions then used to create various resolutions of a modified Reeb graph summary of topology.

## 42. Time Series Forecasting

43. \} Similar to decomposing superposed states $\circ$ Seasonal trends $\circ$ Yearly trends $\circ$ Trend averages $\circ$ Dependencies on previous time point $\}$ Knit individual forecasted pieces into a complete forecast by superposing these individual forecasts \} Several extensions to neural networks, time- lagged machine learning models...
44. \} A time-series method incorporating predictors $\circ$ Constant predictors at initial time point $\circ$ Varying predictors at multiple time points \} Creates a sort of correlation web between predictors and time points ${ }^{\circ}$ Can handle multiple time lags and multivariate outcomes ${ }^{\circ}$ Can handle any GLM outcome links \} Related to partial differential equations of dynamic systems
45. \} Data-based mining for SEM relationships/time-lag components $\circ$ Leverages conditional probability between predictors to find dependencies ${ }^{\circ}$ Does not require a priori model formulation like SEM \} Peeking at data to create a dependency web over time or predictors/outcome \} Can be validated by a follow-up SEM based on network structure Time 1 Outcome Predictor 2 Time 2 Outcome Time 3 Outcome
46. \} Technically: $\circ$ Matrix decomposition (similar to PCA/manifold learning) $\circ$ Followed by spectral methods $\circ$ Cleaning of time-lagged covariance matrix $\circ$ Reconstruction with simple forecast $\}$ Kind of like deconstructing, cleaning, a rebuilding a car engine
47. \} Combines k-nearest neighbors-based clustering with memoryless state changes converging to a transition distribution (weighted directed graph) $\circ$ Reduce an observation to a pattern $\circ$ Remember patterns seen (across time or space) $\circ$ Match new observations to this set of patterns ${ }^{\circ}$
Computationally more feasible than $k$-means clustering Like remembering classes of chess board configurations across games played
48. \} Many machine learning methods exist today, and many more are being developed every day. \} Methods come with certain assumptions that must be met. ${ }^{\circ}$ Breaking assumptions can lead to poor model fit or incorrect inference. $\circ$ Matching a method to a problem not only can help with better prediction and inference; it can also lead to faster computation times and better presentations to clients. \} Development depends on problem-matching and deep understanding of the mathematics behind the methods used.
49. \} Parametric Regression: ${ }^{\circ}$ Draper, N. R., Smith, H., \& Pownell, E. (1966). Applied regression analysis (Vol. 3). New York: Wiley. $\circ$ McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16(3), 285-292. ${ }^{\circ}$ Zou, H., \& Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320. ${ }^{\circ}$ Augugliaro, L., Mineo, A. M., \& Wit, E. C. (2013). Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(3), 471-498. ${ }^{\circ}$ Raftery, A. E., Madigan, D., \& Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92(437), 179-191. ${ }^{\circ}$ Osborne, M. R., \& Turlach, B. A. (2011). A homotopy algorithm for the quantile regression lasso and related piecewise linear problems. Journal of Computational and Graphical Statistics, 20(4), 972-987. ${ }^{\circ}$ Drori, I., \& Donoho, D. L. (2006, May). Solution of 11 minimization problems by LARS/homotopy methods. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on (Vol. 3, pp. III-III). IEEE.
50. \} Semi-Parametric Regression: ॰ Marsh, L. C., \& Cormier, D. R. (2001). Spline regression models (Vol. 137). Sage. ○ Hastie, T., \& Tibshirani, R. (1986). Generalized additive models. Statistical science, 297-310. ${ }^{\circ}$ McZgee, V. E., \& Carleton, W. T. (1970). Piecewise regression. Journal of the American Statistical Association, 65(331), 1109-1124. ${ }^{\circ}$ Gerber, S., Rübel, O., Bremer, P. T., Pascucci, V., \& Whitaker, R. T. (2013). Morse- Smale Regression. Journal of Computational and Graphical Statistics, 22(1), 193-214. ${ }^{\circ}$ Hearst, M. A., Dumais, S. T., Osman, E., Platt, J., \& Scholkopf, B. (1998). Support vector machines. Intelligent Systems and their Applications, IEEE, 13(4), 18-28. ${ }^{\circ}$ Hornik, K., Stinchcombe, M., \& White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366. $\circ$ Krizhevsky, A., Sutskever, I., \& Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). ${ }^{\circ}$ Huang, G. B., Wang, D. H., \& Lan, Y. (2011). Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2(2), 107-122. ${ }^{\circ}$ Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 1-67. ${ }^{\circ}$ Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... \& Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.
51. \} Nonparametric Regression: $\circ$ Buntine, W. (1992). Learning classification trees. Statistics and computing, 2(2), 63-73.。 Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics \& Data Analysis, 38(4), 367-378. ${ }^{\circ}$ Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford university press. ${ }^{\circ}$ Zhang, G. (2011). Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal of Heuristics, 17(3), 303-351. ${ }^{\circ}$ Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems (pp. 1-15). Springer Berlin Heidelberg. ${ }^{\circ}$ Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics \& Data Analysis, 38(4), 367-378. ${ }^{\circ}$ Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. $\circ$ Chen, T., \& Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22 nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). ACM.
52. \} Supervised with Unsupervised Methods: ${ }^{\circ}$ van der Maaten, L. J., Postma, E. O., \& van den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Journal of Machine Learning Research, 10(1-41), 66-71. ॰ Kuncheva, L. I., \& Rodríguez, J. J. (2007). An experimental study on rotation forest ensembles. In Multiple Classifier Systems (pp. 459-468). Springer Berlin Heidelberg. ${ }^{\circ}$ van der Laan, M. J., Polley, E. C., \& Hubbard, A. E. (2007). Super learner. Statistical applications in genetics and molecular biology, 6(1). ${ }^{\circ}$ Sapp, S. K. (2014). Subsemble: A Flexible Subset Ensemble Prediction Method (Doctoral dissertation, University of California, Berkeley). 53. \} Unsupervised Methods: ॰ Fukunaga, K., \& Narendra, P. M. (1975). A branch and bound algorithm for computing k-nearest neighbors. Computers, IEEE Transactions on, 100(7), 750-753. - MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297). ${ }^{\circ}$ Chartrand, G., \& Oellermann, O. R. (1993). Applied and algorithmic graph theory. ${ }^{\circ}$ Ng, A. Y., Jordan, M. I., \& Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 2, 849-856.。 Singh, G., Mémoli, F., \& Carlsson, G. E. (2007, September). Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition. In SPBG (pp. 91-100). ${ }^{\circ}$ Chen, Y. C., Genovese, C. R., \& Wasserman, L. (2016). A comprehensive approach to mode clustering. Electronic Journal of Statistics, 10(1), 210-241.
53. $\}$ Time Series $\circ$ Wu, J. P., \& Wei, S. (1989). Time series analysis. Hunan Science and Technology Press, ChangSha. ${ }^{\circ}$ Vautard, R., Yiou, P., \& Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1), 95-126. ${ }^{\circ}$ Dunham, M. H., Meng, Y., \& Huang, J. (2004, November). Extensible markov model. In Data Mining, 2004. ICDM'04. Fourth IEEE International Conference on (pp. 371-374). IEEE. ○ Ullman, J. B., \& Bentler, P. M. (2003). Structural equation modeling. John Wiley \& Sons, Inc.. ${ }^{\circ}$ Heckerman, D., Geiger, D., \& Chickering, D. M. (1994, July). Learning Bayesian networks: The combination of knowledge and statistical data. In Proceedings of the Tenth international conference on Uncertainty in artificial intelligence (pp. 293-301). Morgan Kaufmann Publishers Inc..

## References

## Parametric Regression

- Draper, N. R., Smith, H., \& Pownell, E. (1966). Applied regression analysis (Vol. 3). New York: Wiley.
- McCullagh, P. (1984). Generalized linear models. European Journal of Operational Research, 16(3), 285-292.
- Zou, H., \& Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 672), 301-320.
- Augugliaro, L., Mineo, A. M., \& Wit, E. C. (2013). Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 75(3), 471-498.
- Raftery, A. E., Madigan, D., \& Hoeting, J. A. (1997). Bayesian model averaging for linear regression models. Journal of the American Statistical Association, 92(437), 179-191.
- Osborne, M. R., \& Turlach, B. A. (2011). A homotopy algorithm for the quantile regression lasso and related piecewise linear problems. Journal of Computational and Graphical Statistics, 20(4), 972-987.
- Drori, I., \& Donoho, D. L. (2006, May). Solution of 11 minimization problems by LARS/ homotopy methods. In Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference on (Vol. 3, pp. III-III). IEEE.


## References

## Semi-Parametric Regression

- Marsh, L. C., \& Cormier, D. R. (2001). Spline regression models (Vol. 137). Sage.
- Hastie, T., \& Tibshirani, R. (1986). Generalized additive models. Statistical science, 297-310.
- McZgee, V. E., \& Carleton, W. T. (1970). Piecewise regression. Journal of the American Statistical Association, 65(331), 1109-1124.
- Gerber, S., Rübel, O., Bremer, P. T., Pascucci, V., \& Whitaker, R. T. (2013). MorseSmale Regression. Journal of Computational and Graphical Statistics, 22(1), 193214.
- Hearst, M. A., Dumais, S. T., Osman, E., Platt, J., \& Scholkopf, B. (1998). Support vector machines. Intelligent Systems and their Applications, IEEE, 13(4), 18-28.
- Hornik, K., Stinchcombe, M., \& White, H. (1989). Multilayer feedforward networks are universal approximators. Neural networks, 2(5), 359-366.
- Krizhevsky, A., Sutskever, I., \& Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105).
- Huang, G. B., Wang, D. H., \& Lan, Y. (2011). Extreme learning machines: a survey. International Journal of Machine Learning and Cybernetics, 2(2), 107-122.
- Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics, 1-67.
- Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... \& Ghemawat, S. (2016). Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.


## References

## Nonparametric Regression

- Buntine, W. (1992). Learning classification trees. Statistics and computing, 2(2), 63-73.
- Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics \& Data Analysis, 38(4), 367-378.
- Bäck, T. (1996). Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford university press.
- Zhang, G. (2011). Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal of Heuristics, 173), 303-351.
- Dietterich, T. G. (2000). Ensemble methods in machine learning. In Multiple classifier systems (pp. 1-15). Springer Berlin Heidelberg.
- Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics \& Data Analysis, 38(4), 367-378.
- Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
- Chen, T., \& Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794). ACM.


## References

## Supervised with Unsupervised Methods

- van der Maaten, L. J., Postma, E. O., \& van den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Journal of Machine Learning Research, 10(1-41), 66-71.
- Kuncheva, L. I., \& Rodríguez, J. J. (2007). An experimental study on rotation forest ensembles. In Multiple Classifier Systems (pp. 459468). Springer Berlin Heidelberg.
- van der Laan, M. J., Polley, E. C., \& Hubbard, A.
E. (2007). Super learner. Statistical applications in genetics and molecular biology, 6(1).
- Sapp, S. K. (2014). Subsemble: A Flexible Subset Ensemble Prediction Method (Doctoral dissertation, University of California, Berkeley).


## References

## Unsupervised Methods

- Fukunaga, K., \& Narendra, P. M. (1975). A branch and bound algorithm for computing k-nearest neighbors. Computers, IEEE Transactions on, 1007), 750-753.
- MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability (Vol. 1, No. 14, pp. 281-297).
- Chartrand, G., \& Oellermann, O. R. (1993). Applied and algorithmic graph theory.
- Ng, A. Y., Jordan, M. I., \& Weiss, Y. (2002). On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 2, 849-856.
- Singh, G., Mémoli, F., \& Carlsson, G. E. (2007, September). Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition. In SPBG (pp. 91-100).
- Chen, Y. C., Genovese, C. R., \& Wasserman, L. (2016). A comprehensive approach to mode clustering. Electronic Journal of Statistics, 1Q1), 210-241.


## References

## Time Series

- Wu, J. P., \& Wei, S. (1989). Time series analysis. Hunan Science and Technology Press, ChangSha.
- Vautard, R., Yiou, P., \& Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1), 95-126.
- Dunham, M. H., Meng, Y., \& Huang, J. (2004, November). Extensible markov model. In Data Mining, 2004. ICDM'04. Fourth IEEE International Conference on (pp. 371-374). IEEE.
- Ullman, J. B., \& Bentler, P. M. (2003). Structural equation modeling. John Wiley \& Sons, Inc..
- Heckerman, D., Geiger, D., \& Chickering, D. M. (1994, July). Learning Bayesian networks: The combination of knowledge and statistical data. In Proceedings of the Tenth international conference on Uncertainty in artificial intelligence (pp. 293-301). Morgan Kaufmann Publishers Inc..

