Avant-directrices d'une Turbine Hydraulique

Dans les turbines à LG3, le débit volumique est $\dot{Q}=272m^3/sec$. Le rayon intérieur des avant-directrices est $r_i=3.8m$ et l'hauteur des pales est de $b_o=1.4m$. En supposant $\rho=1000kg/m^3$, calculez la vitesse de l'écoulement à la sortie des avant-directrices si l'angle de sortie de ces pales est de 30^o par rapport à la direction radiale.

Figure 1: Turbine Kaplan

$$\dot{m} = \int
ho \mathbf{v} \cdot d\mathbf{S} =
ho v_r \ 2\pi \ r \ b$$

$$\dot{m} = \rho Q = \rho v_r \ 2\pi \ r \ b \rightarrow \ v_r = 8.14 m/s$$

$$V = \frac{v_r}{cos\theta} = \frac{8.14}{0.866} = 9.4m/s$$

$Compresseur\ I$

À l'entrée du rotor d'un compresseur la vitesse moyenne est de $C_1 = 300 m/s$. L'aire de la section de passage est $A = 0.08 m^2$. La température et la pression de l'environnement sont respectivement $T_{env} = 300 K$ et $p_{env} = 100 k Pa$. La puissance fournie par le compresseur au fluide est $\dot{W} = 300 MW$. Calculez:

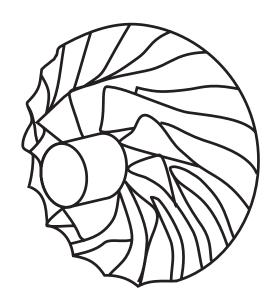


Figure 2: Compresseur

 Les conditions de stagnation: température, la pression et masse volumique à l'entrée du compresseur

- le débit massique
- la pression de stagnation maximale possible à la sortie.

Considérer l'air comme un gaz idéal avec $m{R}=286.96(m{J/Kg}~m{K})$ et $m{C}_p=1010(m{J/Kg}~m{K})$

$$T_{01} = 300K$$
, $P_{01} = 100kPa \rightarrow \rho_{01} = \frac{P_{01}}{RT_{01}} = 1.162 \frac{kg}{m^3}$

$$m_1 = \rho_1 A_1 C_1$$

$$ho_1=rac{P_1}{RT_1}$$

$$m{T}_{01} = m{T}_1 + rac{m{C}_1^2}{2m{C}_p}$$

$$m{T}_1 = m{T}_{01} - rac{m{C}_1^2}{2m{C}_n} = 300 - rac{300^2}{2 imes 1010} = 255.44$$

$$\frac{\mathbf{P}_1}{\mathbf{P}_{01}} = \left(\frac{\mathbf{T}_1}{\mathbf{T}_{01}}\right)^{\frac{\mathbf{C}_p}{\mathbf{R}}} \to \mathbf{P}_1 = 100 \left(\frac{255}{300}\right)^{\frac{1010}{286.96}} = 56.7512$$

$$\rho_1 = \frac{P_1}{RT_1} = \frac{56.7512}{286.96 \times 255} = 0.7739 \frac{kg}{m^3}$$

$$\dot{m}_1 = \rho_1 A_1 C_1 = 0.7739 \times 0.08 \times 300 = 18.754 \frac{kg}{s}$$

Pression a la sortie

$$rac{\dot{m{W}}}{\dot{m{m}}} = (m{h}_2 - m{h}_1) = m{C}_p(m{T}_{02} - m{T}_{01})$$

$$oldsymbol{T}_{02} = oldsymbol{T}_{01} + rac{\dot{oldsymbol{W}}}{oldsymbol{C}_p imes \dot{oldsymbol{m}}} = 465 \,\, oldsymbol{K}$$

$$\left(rac{oldsymbol{T}_{02}}{oldsymbol{T}_{01}}
ight)^{rac{oldsymbol{C}_p}{oldsymbol{R}}} = rac{oldsymbol{P}_{02}}{oldsymbol{P}_{01}}
ightarrow oldsymbol{P}_{02s} = 470 oldsymbol{kPa}$$

EULERI

Calculer la puissance générée par un turbine dans laquelle le débit massique est $\dot{m}=6kg/s$ et la vitesse d'entrée $C_1=975m/s$, avec un angle de 70^o par rapport à la direction axiale. On considère que la vitesse à la sortie des aubes et sans rotation (elle n'a pas de composante périphérique). Le diamètre moyen de la turbine est d=1m et l'arbre tourne à 10000rpm.

$$rac{\dot{m{W}}}{\dot{m{m}}} = (m{U}_2m{C}_{2u} - m{U}_1m{C}_{1u}) = -m{U}_1m{C}_{1u}$$

$$U_1 = \frac{2\pi nd}{60} = \frac{2\pi 100001}{60} = 523.6 \frac{m}{s}$$

$$C_{1u} = C_1 cos \ 20^o = 916 \ \frac{m}{s}$$

$$\frac{\dot{W}}{\dot{m}} = -523 \times 916 = 479721 \frac{m^2}{s^2}$$

$$\dot{W} = -479721 \frac{m^2}{s^2} \times 6 \frac{kg}{s} = 2.878 MW$$

Polytrop I

Trouvez le rapport: (pression statique à la sortie)/ (pression de stagnation à la entrée) pour un compresseur centrifuge dont le rotor a 300mm de diamètre et la vitesse de rotation est n=20000rpm. Le nombre de pales est N=15. À l'entrée on considère qu'il n'y a pas de prérotation et les conditions de l'air sont $T=15^{o}C$ et $p=100kN/m^{2}$. Le débit massique d'air est $\dot{m}=0.9kg/s$ et la composante péripherique de la vitesse absolue à la sortie est 90% de la vitesse périphérique. Le rendement polytropique du compresseur est 80%.

$$\frac{\dot{W}}{\dot{m}} = (h_{02} - h_{01}) = (U_2 C_{2u} - U_1 C_{1u}) = U_2 C_{2u} = 0.9 U_2 \times U_2$$

$$U_2 = \frac{2\pi ND}{60} = \frac{2\pi 2000000.30}{60} = 314.6 \frac{m}{s}$$

Gaz idéal

$$C_p(T_{02} - T_{01}) = (h_{02} - h_{01}) = \frac{\dot{W}}{\dot{m}} = 88826 \frac{m^2}{s^2}$$

$$m{T}_{02} = m{T}_{01} + rac{\dot{m{W}}}{m{C}_p \dot{m{m}}} = 288m{k} + rac{88826}{1012} = 375.78$$

$$m{T}_{02} = rac{m{T}_{01} + m{T}_{02}}{2} = 331,89
ightarrow m{C}_p = 1007.8 rac{m{J}}{m{kg} \ m{K}}$$

$$rac{m{P}_{02}}{m{P}_{01}} = \left(rac{m{T}_{02}}{m{T}_{01}}
ight)^{rac{m{\eta}_p m{C}_p}{m{R}}} = \left(rac{375.78}{288}
ight)^{rac{0.8 imes 1007}{288.97}} = 2.117$$

Polytrop II On considère un compresseur axial à N étages avec un rendement polytropique global $\eta_p=0.9$. Les conditions de stagnation à l'entrée sont $p_{01}=1atm$, $T_{01}=300K$ et le rapport de pression $r_p=10$.

- a) Calculer le rendement isentropique de ce compresseur.
- b) Calculer le rendement isentropique après M étages, si le rapport de pression est de $r_M=5$.
- c)Calculer le rendement isentropique entre l'étage $oldsymbol{M}$ et l'étage $oldsymbol{N}$.
- Considérez que le rendement polytropique par étage est égale au rendement polytropique global.
- ullet Considérez $C_p = cte$

a)

$$m{\eta}_s = rac{m{h}_{02s} - m{h}_{01s}}{m{h}_{02} - m{h}_{01}} = rac{m{C}_p(m{T}_{02s} - m{T}_{01s})}{m{C}_p(m{T}_{02} - m{T}_{01})}$$

$$rac{m{T}_{02s}}{m{T}_{01}} = \left(rac{m{P}_{02}}{m{P}_{01}}
ight)^{rac{m{\gamma}-1}{m{\gamma}}} = (10)^{rac{m{0.4}}{m{1.4}}} = 1.931$$

$$rac{m{T}_{02}}{m{T}_{01}} = \left(rac{m{P}_{02}}{m{P}_{01}}
ight)^{rac{m{\gamma}-1}{m{\eta}_pm{\gamma}}} = (10)^{rac{m{0.4}}{m{0.9} imes1.4}} = 2.077$$

$$\eta_s = \frac{(579.2 - 300)}{(623.1 - 300)} = 0.86$$

b)

Après $oldsymbol{M}$ étages, le rapport est:

$$rac{m{T}_{0Ms}}{m{T}_{01}} = \left(rac{m{P}_{0M}}{m{P}_{01}}
ight)^{rac{m{\gamma}-1}{m{\gamma}}} = (5)^{rac{m{0.4}}{1.4}} = 1.584$$

$$T_{0Ms} = 500$$

$$rac{m{T}_{0M}}{m{T}_{01}} = \left(rac{m{P}_{0M}}{m{P}_{01}}
ight)^{rac{m{\gamma}-1}{m{\eta}_pm{\gamma}}} = (5)^{rac{0.4}{0.9 imes1.4}} = 1.667$$

$$T_{0M} = 475$$

$$\eta_s = \frac{(475 - 300)}{(500 - 300)} = 0.876$$

Entre l'étage $oldsymbol{M}$ et le 10 on a:

$$egin{aligned} rac{oldsymbol{T}_{02s}}{oldsymbol{T}_{0M}} = \left(rac{oldsymbol{P}_{02}}{oldsymbol{P}_{0M}}
ight)^{oldsymbol{\gamma}-1} = (2)^{oldsymbol{0.4}{1.4}} = 1.22 \end{aligned}$$

$$T_{02s} = 609$$

$$\eta_s = \frac{(609 - 500)}{(623.1 - 500)} = 0.886$$

Polytrop~III Un compresseur, à N étages, a un rapport de pression par étage ${\pmb r}_p$. Chaque étage a un rendement total-à-total ${\pmb \eta}_e$.

- a) Déduire une expression pour la variation de température totale par étage.
- b) Trouver un formule pour le rendement total-àtotal du compresseur.

$$\Delta T_{0s} = T_{0,k+1} - T_{0,k} = T_{0,k} \left(\frac{T_{0,k+1}}{T_{0,k}} - 1 \right) = T_{0,k} \left(r_p \frac{\gamma - 1}{\gamma} - 1 \right)$$
 $\Delta T_{0r} = \frac{\Delta T_{0s}}{\eta_p}$

$$\Delta oldsymbol{T}_{0r} = oldsymbol{T}_{0,k} rac{oldsymbol{\left(oldsymbol{r}_p - 1
ight)}}{oldsymbol{\eta}_p}$$

$$T_{k+1,0} = T_{k,0}(1+A)$$

$$T_{k+2,0} = T_{k+1,0}(1+A)$$

$$T_{k+2,0} = T_{k,0}(1+A)^2$$

$$T_{N+1,0} = T_{1,0}(1+A)^N$$

$$m{\eta}_{tt} = rac{m{T}_{N+1,0,s} - m{T}_{1,0}}{m{T}_{N+1,0,r} - m{T}_{1,0}}$$

$$rac{oldsymbol{\gamma}-1}{oldsymbol{T}_{1,0}}oldsymbol{N}}{oldsymbol{T}_{1,0}}=oldsymbol{r}_p^{}rac{oldsymbol{\gamma}-1}{oldsymbol{\gamma}}oldsymbol{N}$$

Polytrop IV On a un compresseur axial à 16 étages et le rapport de pression de chacun des étages est le même. Le taux de compression du compresseur est 6.3 et le rendement 'total-total' de chaque étage est 89.5%. Le gaz peut être considéré comme un gaz idéal $(\gamma=1.4)$.

- a) Estimer le rendement global, total-à-total, à partir d'un développement étage par étage.
 - b) Calculer le rendement polytropique infinitésimal

$$r_p = 6.3\overline{16} = 1.1219$$

L'incrément isentropique de température totale est:

$$egin{array}{lcl} \Delta oldsymbol{T}_s = oldsymbol{T}_{i+1}, 0 - oldsymbol{T}_{i,0} &= oldsymbol{T}_{i,0} \left(rac{oldsymbol{T}_{i+1}, 0}{oldsymbol{T}_{i,0}} - 1
ight) \ &= oldsymbol{T}_{i,0} \left(rac{oldsymbol{\gamma} - 1}{oldsymbol{\gamma}} - 1
ight) \end{array}$$

L'incrément réel de température totale est:

$$\Delta oldsymbol{T}_r = rac{\Delta oldsymbol{T}_s}{oldsymbol{\eta}_p}$$

$$= egin{array}{ccc} oldsymbol{T_{i,0}} & egin{array}{ccc} rac{oldsymbol{\gamma}-1}{oldsymbol{\eta}_p} \ \end{array} \end{array}$$

$$A = \frac{\frac{\gamma - 1}{\gamma}}{\eta_p} = \frac{\frac{0.4}{1.4 - 1}}{0.895} = 0.03733$$

$$T_{i+1}, 0 = T_{i,0}(A+1)$$

 $T_{i+2}, 0 = T_{i,1}(A+1)$
 $T_{i+2}, 0 = T_{i,0}(A+1)^2$

$$T_{N+1,0} = T_{i,0}(A+1)^N$$

$$m{\eta}_{tt} \;\; = \;\; rac{m{T}_{N+1,0}^r - m{T}_{1,0}}{m{T}_{N+1,0}^s - m{T}_{1,0}}$$

$$m{\eta}_{tt} = rac{rac{m{\gamma} - 1}{m{\gamma}} m{N}}{((1 + m{A})^N - 1)} = rac{0.4}{(6.3)^{1.4} - 1} = 0.8675$$

b)

De l'équation:

$$oldsymbol{\eta_{is}} = rac{\left[\left(rac{oldsymbol{p}_{o2}}{oldsymbol{p}_{o1}}
ight)^{(\gamma-1)/\gamma} - 1
ight]}{\left[\left(rac{oldsymbol{p}_{o2}}{oldsymbol{p}_{o1}}
ight)^{(\gamma-1)/\eta_{pol}\gamma} - 1
ight]}$$

on obtient:

$$oldsymbol{\eta_p} = rac{oldsymbol{\gamma} - 1}{oldsymbol{\gamma}} rac{oldsymbol{ln} \; oldsymbol{r_p^N}}{oldsymbol{\eta_{tt}}} oldsymbol{ln} \left(rac{oldsymbol{r_p^{\gamma-1}}^N - 1 + oldsymbol{\eta_{tt}}}{oldsymbol{\eta_{tt}}}
ight)$$

$$m{\eta}_p = rac{0.4}{1.4} rac{m{ln} \; 6.3}{m{ln} \left(rac{6.3^{rac{0.4}{1.4}} - \; 1 + 0.8675}{0.8675}
ight)} = 0.8967$$

Pour une turbine axiale, on a les donnés suivants:

$N_{cute{e}tages}$	3	u		П	$m{mdx}0009$	$T_{entr\'ee}$:		1200K
$m{P}_{entr\'ee}$	2.5 bar		$oldsymbol{P}_{sortie}$		1.020 bar	\dot{m}	Ш	35kg/
η_{tt}	0.92		R		287J/kgK	~		1.4
r_{ext}	0.45m		$m{r}_{int}$		0.3m			

a)Calculez ψ et ϕ . b)Calculez les angles du triangle de vitesse si R=0.5

Compresseur Axial

$$N_{étages} = 5$$
 $U = 313m/s$ $T_{entrée,0} = 293K$ $P_{entrée,0} = 0.1Mpa$ $\psi = 0.393$ $\dot{m} = 19kg/s$ $R_g = 287J/kgK$ $\gamma = 1.4$ $r_{ext} = 0.339m$ $r_{int} = 0.271m$ $\eta_{pol} = 0.9$

Estimer

(2)

- la puissance transmise au fluide
- ullet les angles $lpha_1,eta_1$ et eta_2
- les conditions de stagnation à la sortie

 $T_{01} = 293K$, $P_{01} = 0.1MPa$ $A_1 = \pi(0.339^2 - 0.271^2)$ \dot{m}

$$\left(egin{array}{lcl} C_{1x} &=& rac{\dot{m}_1}{
ho_1 A_1} &=& rac{19}{
ho_1 \pi (0.339^2 - 0.271^2)} \
ho_1 &=& rac{P_1}{R T_1} &=& rac{P_1}{286.96 imes T 1} \
ho_1 &=& T_{01} - rac{C_1^2}{2 C_p} &=& 293 - rac{C_1^2}{2 imes 1004} \
ho_1 &=& P_{01} \left(rac{T_1}{T_{01}}
ight)^{rac{\gamma}{\gamma - 1}} &=& 0.1 imes 10^6 \left(rac{T_1}{293}
ight)^{rac{1.4}{0.4}} \end{array}$$

NEWTON -> T=284K, P=0.0897~Mpa, $\rho=1.1~kg/m^3,$ $C_1=132~m/s$

$$egin{aligned} oldsymbol{W}_e &= oldsymbol{\psi} oldsymbol{U}^2 = (0.393 imes (313)^2) imes 5 \ oldsymbol{W}_e &= 192 \ 5095 oldsymbol{J/kg} \ \dot{oldsymbol{W}} &= \dot{oldsymbol{m}} oldsymbol{W}_e = 3.657 oldsymbol{M} oldsymbol{W} \end{aligned}$$

$$egin{array}{ll} m{R} &=& rac{m{\phi}}{2}(m{tan}m{eta}_1+m{tan}m{eta}_2) \ m{\psi} &=& m{\phi}(m{tan}m{eta}_1-m{tan}m{eta}_2) \ m{\phi} &=& rac{m{C}_m}{m{I}I} =rac{132.7}{313} =0.424 \end{array}$$

$$tan\beta_1 = \frac{2R + \psi}{2\phi} = \frac{2 \times 0.5 + 0.393}{2 \times 0.424} = 1.63$$

$$\beta_1 = 58.67$$

$$tan\beta_2 = \frac{2R - \psi}{2\phi} = \frac{2 \times 0.5 - 0.393}{2 \times 0.424} = 0.715$$

$$oldsymbol{eta}_2=35.58$$
 $oldsymbol{lpha}_1=oldsymbol{eta}2=35.58$

$$\eta_{s} = \frac{\left[\left(\frac{\boldsymbol{p}_{o2}}{\boldsymbol{p}_{o1}} \right)^{(\gamma-1)/\gamma} - 1 \right]}{\left[\left(\frac{\boldsymbol{p}_{o2}}{\boldsymbol{p}_{o1}} \right)^{(\gamma-1)/\eta_{pol}\gamma} - 1 \right]} \tag{3}$$

Hypothèse $r_p = 5->$

$$\eta_{tt} = \frac{(5)^{(0.4)/1.4} - 1}{(5)^{(0.4)/0.9 \times 1.4} - 1} = 0.875 \tag{4}$$

$$W = C_p(T_{02} - T_{01}) - > T_{02} = 484.7$$

$$\eta_{tt} = \frac{T_{02s} - T_{01}}{T_{02} - T_{01}} \tag{5}$$

$$T_{02s} = 460.12$$

$$\frac{\mathbf{P}_{02}}{\mathbf{P}_{01}} = \left(\frac{460}{293}\right)^{0.4)/1.4} = 4.84$$

Turbine axiale

$$\phi = 0.8 \qquad n = 250 \text{ rps} \qquad T_{entr\'ee} = 1100K
P_{entr\'ee} = 4 \text{ bar} \qquad P_{01}/P_{03} = 1.873 \qquad \dot{m} = 20kg/s
\eta_{tt} = 0.9 \qquad R = 287J/kgK \gamma = 1.333
U_{moy} = 340m/s \ \Delta T_{01-03} = 145K \ \alpha_3 = 10^o$$
(6)

a)Calculer ψ eta_3 $m{R}$, eta_2 $lpha_2$, $m{C}_2$, $m{T}_2$, $m{P}_2$, $m{
ho}_2$, $m{A}_2$ (normale à la vitesse $m{C}_2$).

Considérer $oldsymbol{C}_p = cte = 1148 J/kg \; K$

b) Calculer les surface annulaires aux sections 1,2,et 3.

d) Calculer l'hauteur des aubes aux sections 1,2 et 3.

$$m{\psi} = rac{m{C}_p \Delta m{T}}{m{U}^2} = rac{1148 imes 145}{340^2} = 1.44$$

$$oldsymbol{tan}oldsymbol{lpha}_3 = oldsymbol{tan}oldsymbol{eta}_3 - rac{1}{oldsymbol{\phi}}$$

$$tan\beta_3 = tan10 + \frac{1}{0.8} = 0.1763 + 1.25$$

$$oldsymbol{eta_3} = 54.57$$
 $oldsymbol{taneta_3} = rac{1}{2oldsymbol{\phi}}(0.5oldsymbol{\phi} + 2oldsymbol{R})$

$$->R$$

$$tanoldsymbol{eta}_2 = rac{1}{2oldsymbol{\phi}}(0.5oldsymbol{\phi} - 2oldsymbol{R})$$

$$->\beta_2$$

$$tan oldsymbol{lpha}_2 = tan oldsymbol{eta}_2 + rac{1}{oldsymbol{\phi}}$$

$$C_{2x} = U\phi = 340 \times 0.8 = 272 \ m/s$$

$$C_{2x} = C_2 cos \alpha_2 = - > C_2 = \frac{272}{cos 58.23} = 519m/s$$

$$oldsymbol{T}_2 = oldsymbol{T}_{02} - rac{oldsymbol{C}_2^2}{2oldsymbol{C}_p}$$

Hypothèse $T_{02} = T_{01}$

$$T_2 = 1100 K - \frac{(519)^2}{2 \times 1148} = 982.7 K$$
 $\frac{P_{02}}{P_2} = \left(\frac{T_{02}}{T_2}\right)^{\gamma/\gamma - 1} = 1.57$

 $P_2 = 2.548$

$$C_1 = C_3 = \frac{C_x}{cos10} = 276.4 \ m/s$$

$$m{T}_1 = m{T}_{01} - rac{m{C}_1^2}{2m{C}_p} = 1100 - rac{(276.4)^2}{2 imes 1148}$$
 $m{T}_1 = 1067.8~m{K}$

$$rac{oldsymbol{P}_1}{oldsymbol{P}_{01}}=\left(rac{oldsymbol{T}_1}{oldsymbol{T}_{01}}
ight)^{\gamma/\gamma-1}=1.57$$

$$P_1 = 3.54 \ bar$$

$$ho_1 = rac{p_1}{R \ T_1} = 1.155 \ kg/m^3$$

$$A_1 = \frac{\dot{m}}{\rho_1 C_{1m}} = \frac{20}{1.115 \times 272}$$

$$A_1 = 0.00637 m^2$$

$$T_{03} = T_{01} - \Delta T_{03} = 1100 - 145 = 955 K$$

$$T_3 = T_{03} - \frac{C_3^2}{2C_p} = 955 - \frac{(276.4)^2}{2 \times 1148}$$

$$T_3 = 922.8$$

$$rac{oldsymbol{P}_3}{oldsymbol{P}_{03}} = \left(rac{oldsymbol{T}_3}{oldsymbol{T}_{03}}
ight)^{\gamma/\gamma-1}$$

$$P_3 = 1.856 \ bar$$

$$ho_3 = rac{m{P}_3}{m{R} imes m{T}_3} = rac{100 imes 1.856}{0.287 imes 922}$$
 $ho_3 = 0.702 \; m{kg/m}^3$

$$A_3 = \frac{\dot{m}}{\rho_1 C_{1x}} = \frac{20}{0.702 \times 272}$$

$$A_3 = 0.1047 m^2$$

$$m{
ho}_2 = rac{m{P}_2}{m{R} imes m{T}_2} = rac{100 imes 2..5478}{0.287 imes 982.7} \ m{
ho}_2 = 0.9 \ m{kg/m}^3$$

$$A_2 = \frac{\dot{m}}{\rho_2 C_{2x}} = \frac{20}{0.702 \times 272}$$

$$A_2 = 0.0817 m^2$$

$$U_m = 2\pi r_m n$$

$$oldsymbol{A} = 2 oldsymbol{\pi} oldsymbol{r}_m oldsymbol{h} = rac{oldsymbol{U}_m oldsymbol{h}}{oldsymbol{n}}$$

$$oldsymbol{h} = rac{oldsymbol{A}}{oldsymbol{U}_m/oldsymbol{n}} = rac{oldsymbol{n}oldsymbol{A}}{oldsymbol{U}_m}$$

Compresseur axial

1)L'angle entre la vitese absolue et la vitesse relative à l'entrée d'un compresseur axial est de 60^o et la température totale est $T_{01}=540^oR$. Considérer que la vitesse absolue à l'entrée est axiale.

Trouver les nombres de Mach absolu et relatif à l'entrée si la vitesse périphérique est de 1141 pi/s. $C_p=6006~pi^2/s^2~^oR$, $R=1716~pi^2/s^2~^oR$

- 2) L'angle de la vitesse relative à la sortie du rotor est de $oldsymbol{\beta}_2=35^o$. Touver l'énergie transmise en pi^2/s^2 et le raport de pression P_{02}/P_{01} si le rendement isentropique est $\eta=0.87$
- 3)On a un compreseur à 4 étages ayant le même rendement et la même consommation énergétique (W). Trouver la variation totale de température de stagnation ainsi que le rapport de pression par étage et total (entrée-sortie). Inclure le " $work\ done\ factor$ " dans le calcul du travail.

Compresseur Centrifuge I

$$egin{array}{lclcl} C_p & = & 1005 J/kg \, K & n & = & 16200 \, rpm & T_{ambient} = & P_{ambient} = & 100 \, kPa & ---- & = & --- & \dot{m} = & ---- & = & ---- & = & 287 J/kg K & \gamma & = & ---- & = & 0.13 \, m & D_{ext-oeil} = & 0.3 \, m & ---- & = & --- & = & \end{array}$$

a)Calculer l'angle à la racine et au sommet du rotor à l'entrée du compresseur.

b) Calculer le nombre de Mach relatif à l'entrée au sommet de l'oeil.

La vitesse d'entrée est axiale

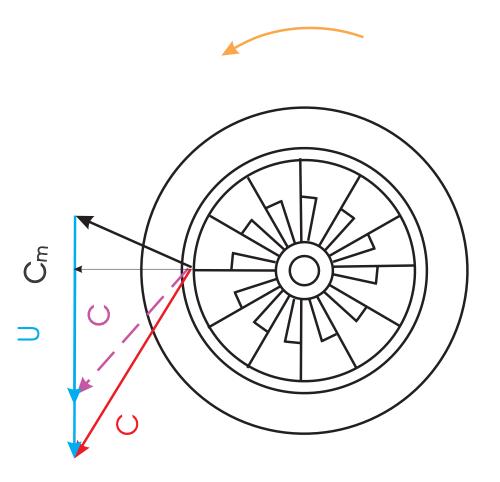


Figure 3: Compresseur Centrifuge

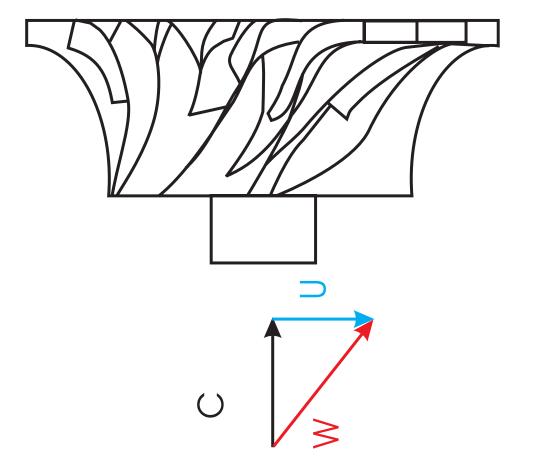


Figure 4: Compresseur Centrifuge

– Typeset by Foil $\mathrm{T}_{\mathrm{F}\mathrm{X}}$ –

Compresseur: suite

$$egin{array}{lcl} m{A}_1 &=& m{\pi}(m{r}_{ext}^2 - m{r}_{int}^2) \ &=& m{\pi}(0.15^2 - 0.065^2) = 0.0574 \; m{m}^2 \end{array}$$

Hypothèse: $\rho_1 = \rho_{01}$

$$ho_1 = rac{m{p}_{01}}{m{R}m{T}_{01}} = rac{m{p}_{01}}{m{R}m{T}_{01}} = rac{10^5}{287 imes 288} = 1.21 rac{m{k}m{g}}{m{m}^3}$$

$$ho_1 = 1.21 \left. rac{kg}{m^3} \right|$$

Eq. Continuité

$$C_{1x} = C_1 = \frac{\dot{m}}{\rho_1 A_{1m}} = \frac{8}{1.21 \times 0.0574}$$

$$C_1 = 115.18.4 \frac{m}{s}$$

$$m{T}_1 = m{T}_{01} - rac{m{C}_1^2}{2m{C}_p} = 288 - -rac{(115.18)^2}{2 imes 1005} = 281.4 \ m{K}$$

$$T_1 = 281.4 \ K$$

$$egin{array}{ccc} oldsymbol{P}_1 \ oldsymbol{P}_{01} \end{array} &=& \left(oldsymbol{T}_1 \ oldsymbol{T}_{01}
ight)^{\gamma/\gamma-1}$$

$$P_1 = 10^5 \left(\frac{281.4}{288}\right)^{1.4/0.4} 92.2 \ kPa$$

$$P_1 = 92.2 \ kPa$$

Correction de ρ_1

$$\rho_1 = \frac{p_1}{R T_1}$$

$$= \frac{92.2 \ 10^3}{287 \times 281.4}$$

$$ho_1=1.14~rac{kg}{m^3}$$

$$C_{1x} = C_1 = \frac{\dot{m}}{\rho_1 A_{1m}} = \frac{8}{1.141 \times 0.0574}$$

$$C_1 = 122.25 \frac{m}{s}$$

$$T_1 = T_{01} - \frac{C_1^2}{2C_p} = 288 - \frac{(115.18)^2}{2 \times 1005}$$

$$T_1 = 280.57 \; K$$

$$P_1 = 10^5 \left(\frac{280.57}{288}\right)^{3.5}$$

$|P_1 = 91.25 |kPa|$

$$egin{aligned} U_i &= rac{2\pi r_i n}{60} = rac{2\pi imes 0.065_i 1600}{60} \ &= 110.3 rac{m}{s} \ taneta_i &= rac{U_i}{C_1} = rac{110.3}{122.25} \ &
ightarrow eta_i &= 42.05^o \ U_s &= rac{2\pi r_i n}{60} = rac{2\pi imes 0.15_i 1600}{60} \ &= 254.5 rac{m}{s} \ taneta_s &= rac{U_i}{C_1} = rac{254.5}{122.5} \ &
ightarrow eta_s &= 64.34^o \ M_r = rac{W}{a} \end{aligned}$$

$$oldsymbol{a}_1 = \sqrt{oldsymbol{\gamma} R T_1} = \sqrt{1.4 imes 287 imes 280.6}$$

$$a_1 = 335.8 \frac{m}{s}$$

$$m{W}_1 = \sqrt{m{C}1^2 + m{U}_1^2} = \sqrt{122.5^2 + 254.5^2}$$

$$W_1 = 282.3 \frac{m}{s}$$

$$M_r = \frac{282.3}{335.8}$$

$$M_r = 0.841$$

Compresseur Centrifuge II

Pour le compresseur illustré sur la figure on a les données suivantes

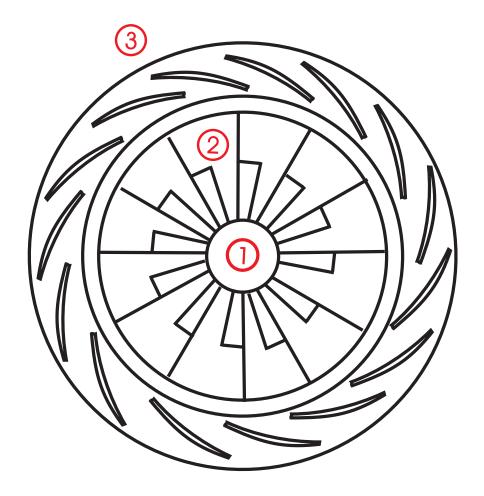


Figure 5: Compresseur Centrifuge

Compresseur Centrifuge II

$$egin{array}{lclcr} oldsymbol{\sigma} &=& 0.92 & n &=& 12000 \ P_{03}/P_{01} &=& 3.8 & \eta_{s(1-3)} &=& 0.82 & \dot{m} &=& 8kg/s \ C_p &=& 1005J/kg \ K & R &=& 287J/kgK \ \gamma &=& 1.4 \ M_{sortie} &=& 1 & P_{01} &=& 101.3 \ kPa & T_{01} &=& 288K \ \end{array}$$

8

La vitesse d'entrée est axiale

Le nombre de Mach (absolu) à la sortie (2) du rotor vaut

Considérer $T_{02}=T_{03}$

Considérer $\eta_s(rotor) = 0.91$

Calculer

- a) le diamètre du rotor
 - b) $oldsymbol{P}_2, oldsymbol{T}_2$ et $oldsymbol{
 ho}_2$
- c) l'épaisseur du rotor à la sortie.

Compresseur Centrifuge II

$$\psi = \frac{C_p \Delta T_0}{\sigma_s U^2} = \frac{C_p (T_{03} - T_{01})}{\sigma_s U^2}$$
(9)

$$m{\eta}(m{T}_{03}-m{T}_{01})=m{T}_{01}\left(rac{m{T}_{03s}}{m{T}_{01}}-1
ight)$$

$$(T_{03} - T_{01}) = \frac{T_{01}}{\eta} \left(\frac{T_{03s}}{T_{01}} - 1 \right)$$

$$(oldsymbol{T}_{03}-oldsymbol{T}_{01})=rac{oldsymbol{T}_{01}}{oldsymbol{\eta}}\left[\left(rac{oldsymbol{P}_{03}}{oldsymbol{P}_{01}}
ight)^{rac{\gamma-1}{\gamma}}-1
ight]$$

$$(\boldsymbol{T}_{03} - \boldsymbol{T}_{01}) = \frac{288}{0.82} (3.8^{\frac{0.4}{1.4}} - 1) = 163.3 \boldsymbol{K}$$

$$m{T}(m{T}_{03} - m{T}_{01}) = 163.3 m{K} = rac{m{\psi} m{\sigma}_s m{U}^2}{m{C}_p}$$

$$U_2 = \sqrt{\frac{163.3 \times 1005}{1.04 \times 0.92}} = 414.5 \frac{m}{s}$$

$$oldsymbol{U}_2 = rac{oldsymbol{\pi} oldsymbol{n} oldsymbol{D}_2}{60}$$

$$D_2 = \frac{U_2 \times 60}{\pi \times n} = \frac{414.15 \times 60}{\pi \times 12000} = 0.659 \ m$$

Rotor 1-2

$$rac{m{P}_{02}}{m{P}_{01}} = \left[1 + rac{m{\eta}_{sr}(m{T}_{02} - m{T}_{01})}{m{T}_{01}}
ight]^{\gamma/(\gamma-1)}$$

$$\frac{\mathbf{P}_{02}}{\mathbf{P}_{01}} = \left[1 + \frac{0.91 \times 163.3}{288}\right]^{\gamma/(\gamma-1)}$$

$$\frac{P_{02}}{P_{01}} = 4.29$$

$$T_{02} = T_{03} = T_{01} + (T_{03} - T_{01}) = 288 + 163.3$$

$$T_{02} = 451.3 \ K$$

$$egin{array}{lcl} m{C}_2 &=& m{a}_2 = \sqrt{m{\gamma} m{R} m{T}_2} \ m{T}_2 &=& m{T}_{02} - rac{m{C}_2^2}{2m{C}_p} \end{array}$$

$$T_2 = 376.1 \; \boldsymbol{K} \mid + \boldsymbol{P}_2 \rightarrow \boldsymbol{\rho}_2$$

$$\left(rac{oldsymbol{T}_2}{oldsymbol{T}_{02}}
ight) = \left(rac{oldsymbol{P}_2}{oldsymbol{P}_{02}}
ight)^{rac{\gamma-1}{\gamma}}$$

$$\left(\frac{\boldsymbol{P}_2}{\boldsymbol{P}_{02}}\right) = \left(\frac{\boldsymbol{T}_2}{\boldsymbol{T}_{02}}\right)^{\frac{\gamma}{\gamma-1}} = \left(\frac{376.1}{451.3}\right)^{3.5} = 0.582$$

$$egin{array}{ll} \left(rac{m{P}_2}{m{P}_{01}}
ight) &=& \left(rac{m{P}_2}{m{P}_{02}}
ight) \left(rac{m{P}_{02}}{m{P}_{01}}
ight) \\ &=& 0.528 imes 4.29 \\ &=& 2.266 \\ m{P}_2 = 2.266 imes 101.3 = 229.58 \; m{kPa} \end{array}$$

$$\rho_2 = \frac{p_2}{R T_2}$$

$$= \frac{229.6 \ 10^3}{287 \times 376.1}$$

$$\rho_2 = 2.127 \; \frac{kg}{m^3}$$

$$C_2^2 = a_2 = \gamma R T_2 = 1.4 \times 287 \times 376.1 = 151117 \frac{m^2}{s^2}$$

$$C_{2u} = \sigma U_2 = 0.92 \times 414.15$$

$$C_{2u} = 381 \frac{m}{s}$$

$$C_{2m} = C_2^2 - C_{2u}^2 = 151117 - (318)^2$$

$$C_{2m}=77.17~rac{m}{s}$$

$$A_2 = \frac{\dot{m}}{\rho_2 C_{2m}} = \frac{8}{2.127 \times 77.17}$$

$$A_2 = 0.0487 \ m^2$$

FINALEMENT!

$$b = \frac{A_2}{\pi D_2} = \frac{0.0487}{\pi 0.659}$$

$$b_2 = 0.0235 m$$

Compresseur Centrifuge III

$$C_{p} = 1000J/kg K \dot{m} = 3kg/s$$

 $P_{03}/P_{01} = 2 \qquad \eta_{s} = 0.75$
 $R = 287J/kgK \qquad \gamma = 1.4$
 $P_{01} = 101.3 kPa \qquad T_{01} = 288K$
(10)

Calculer

 $\Delta T_{0(1-3)}$ isentropique

 $\Delta oldsymbol{T}_{0(1-3)}$ reélle

Le travail isentropique

Le travail reél

Le travail polytropique et le coefficient n

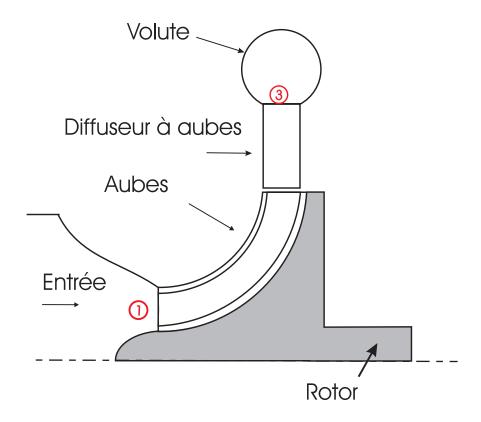


Figure 6: Compresseur Centrifuge

$$m{\eta}(m{T}_{03}-m{T}_{01})=m{T}_{01}\left(rac{m{T}_{03s}}{m{T}_{01}}-1
ight)$$

$$m{T}_{03} - m{T}_{01} = rac{m{T}_{01}}{m{\eta}} \left(rac{m{T}_{03s}}{m{T}_{01}} - 1
ight)$$

$$oxed{(oldsymbol{T}_{03}-oldsymbol{T}_{01})=rac{oldsymbol{T}_{01}}{oldsymbol{\eta}}\left[\left(rac{oldsymbol{P}_{03}}{oldsymbol{P}_{01}}
ight)^{rac{\gamma-1}{\gamma}}-1
ight]}$$

$$\Delta T_{re} = (T_{03} - T_{01}) = \frac{288}{0.75} (2^{\frac{0.4}{1.4}} - 1) = 84.1 K$$

$$\Delta T_{is} = T_{03s} - T_{01} = \eta_s * (T_{03} - T_{01}) = 0.75 * 84.1 = 63.07 K$$

$$T_{03r} = T_{01} + \Delta T_{re} = 372.1 K$$

$$T_{03s} = T_{01} + \Delta T_{is} = 351.07 K$$

$$W_{is} = C_p * (\Delta T_{is}) = 63.7 Kj/kg$$

$$W_{re} = C_p * (\Delta T_{re}) = 84.1 Kj/kg$$

Rotor 1-2

$$oldsymbol{W}_{pl} = rac{oldsymbol{n} oldsymbol{R}}{oldsymbol{n} - 1} [\Delta oldsymbol{T}_{re}]$$

$$\left(\frac{\boldsymbol{P}_{03}}{\boldsymbol{P}_{01}}\right) = 2 = \left(\frac{\boldsymbol{T}_{03r}}{\boldsymbol{T}_{01}}\right)^{\frac{n}{n-1}}$$

$$n = 1.586$$

$$oldsymbol{W}_{pl}=65.45rac{kJ}{kg}$$

58

Compresseur Centrifuge IV

$$egin{array}{lclcr} C_p &=& 1005J/kg\ K \ C_{2m}/U2 &=& 0.3 & eta_2 a &=& 0 \ D_2 &=& 58\ cm & \eta_s &=& 0.82 & \dot{m} &=& 5.89kg/s \ \sigma_s &=& 0.9 & R &=& 287J/kgK \ \gamma &=& 1.4 \ P_{02} &=& 400kPa & P_{01} &=& 1000kPa & T_{01} &=& 20^oC \ \end{array}$$

La vitesse d'entrée est axiale Les pales sont radiales a la sortie

Calculer

- a) la vitesse angulaire du rotor
- b) la température totale , $oldsymbol{T}_{02}$

c)
$$C_2,T_2,P_2,
ho_2$$

c)l'épaisseur $oldsymbol{b}_2$ du rotor à la sortie.

Compresseur Centrifuge IV

$$egin{aligned} rac{oldsymbol{P}_{02}}{oldsymbol{P}_{01}} = \left[1 + rac{oldsymbol{\eta} oldsymbol{\psi} oldsymbol{\sigma}_s oldsymbol{U}^2}{oldsymbol{C}_p oldsymbol{T}_{01}}
ight]^{\gamma/(\gamma-1)} \end{aligned}$$

$$\frac{\boldsymbol{p}_{02}}{\boldsymbol{p}_{01}} = \left[1 + \boldsymbol{\sigma}\boldsymbol{\eta}(\boldsymbol{\gamma} - 1)\left(\frac{\boldsymbol{U}_2}{\boldsymbol{a}_{01}}\right)^2 \left(1 - \frac{\boldsymbol{C}_{2m}}{\boldsymbol{U}_2}\boldsymbol{t}\boldsymbol{a}\boldsymbol{n}\boldsymbol{\beta}_2\right)\right]^{\gamma/(\gamma - 1)}$$

$$\frac{400}{100} = \left[1 + 0.9 \times 0.82 \times 0.4 \left(\frac{U_2}{0.4 \times 287 \times 293}\right)^2 (1 - 0.3 \times tan \ 0)\right]^{1.4/(0.4)}$$

$$U_2 = 440.2 \frac{m}{s} \rightarrow \Omega = \frac{U_2}{r_2} = \frac{440.2}{0.29} = 1518 U_2 = 440.2 \frac{rad}{s}$$

$$\frac{T_{02s}}{T_{01}} = \left(\frac{P_{02}}{P_{01}}\right)^{\frac{\gamma - 1}{\gamma}} = (45)^{\frac{0.4}{1.4}} = 1.486$$

$$m{T_{02s}} = m{1.486} imes 293 = 435 \ m{K}$$
 $m{\eta_s} = rac{m{T_{02s}} - m{T01}}{m{T_{02}} - m{T_{01}}} = 0.82 = rac{435 - 293}{m{T_{02}} - 293}
ightarrow m{T_{02}} = 454 \ m{K}$

$$m{C}_2 = \sqrt{m{C}_{2m}^2 + m{C}_{2u}^2}$$

$$C_{2m} = U_2 \frac{C_2 m}{U_2} = 440.3 \times 0.3 = 132.1$$

$$C_{2u} = \sigma U_2 = 0.9 \times 440.2 = 396.2$$

$$C_2 = \sqrt{132.1^2 + 396.2^2} = 417.6$$

 $T_{02} = 454, C_2 = 417 \rightarrow T_2 = 379.8; P_{02} = 400kPa, T_{02}, T_2 \rightarrow P_2 = 213 kPa \rightarrow \rho_2 = 1.96kg/m^3 \rightarrow \dot{m}, \rho_2, C_{2m}, r_2 \rightarrow b_2 = 0.0125 m$

Pompe centrifuge

$$N = 6$$
 $r_2 = 23 \, cm \, r_1 = 9 \, cm$
 $Q = 0.102 \, m^3 / s \, e_1 (\% \, aubes)_1 = 0.1 \, n = 1000 \, r$
 $\beta_{2a} = 65^o \, e_2 (\% \, aubes)_2 = 0.05$
 $\phi_2 = 0.1 \, c_{1m} \simeq c_{2m}$ (12)

La vitesse d'entrée est axiale

a)Calculer l'épaisseur du rotor à l'entrée et à la sortie.

- b) Calculer l'angle eta_1
- c) Calculer la tête théorique
- d) Calculer la puissance spécicfique théorique

Pompe centrifuge

$$A_2 = 2\pi r_2 b_2 (1 - e_2) = 2\pi 0.23 \times 0.95 b_2 = 1.3729 b_2$$

$$u_2 = \frac{2\pi r_2 n}{60} = \frac{2\pi \times 0.23 \times 1000}{60} = 24.09 \frac{m}{s}$$

$$\phi_2 = \frac{c_{2m}}{U_2} \rightarrow c2m = 0.1 \times 24.09 = 2.409 \frac{m}{s}$$

$$oldsymbol{Q}_2 = oldsymbol{c}_{2m} oldsymbol{A}_2
ightarrow oldsymbol{A}2 = rac{oldsymbol{Q}_2}{oldsymbol{c}_{2m}} = rac{0.102}{2.409} = 0.0424 oldsymbol{m}^2$$

$$b_2 = \frac{A_2}{1.3729} = \frac{0.0424}{1.3729} = 0.0309 \ m$$

$$A_1 = 2\pi r_2 b_2 (1 - e_1) = 2\pi 0.23 \times 0.90 b_1 = 0.509 b_1$$

$$egin{aligned} m{A}_1 &= m{A}_2 = 0.0424 m{m}^2 \ m{b}_1 &= rac{m{A}_1}{0.509} = rac{0.0424}{0.509} = 0.0832 \ m{m} \ m{U}_1 &= m{U}_2 rac{m{r}_1}{m{r}_2} = 24.09 rac{9}{23} = 9.43 rac{m{m}}{m{s}} \end{aligned}$$

$$taneta_1 = rac{m{c}_{1m}}{m{U}_1} = rac{2.409}{9.43}
ightarrow m{eta}_1 = 14.33^o$$

Tête théorique:

$$m{\sigma}_s=1-rac{m{\pi/Zcoseta_{2a}}}{1-(m{C_2m/U_2})m{taneta}_{2a}}$$
 Stodola $m{\sigma}_s=1-rac{m{\pi/6cos}65}{1-(0.1)m{tan}65}=0.718$

$$m{\psi}=m{\sigma}(1-m{\phi}_2m{tan}m{eta}_{2a})=0.718(1-0.1 imesm{tan}\ 65)=0.564$$
 $(m{lpha}_1=0)$

$$W_e = \psi U_2^2 = 0.564 \times 24.09 = 327 \frac{J}{kg}$$

Similitude 1

L'hauteur de charge ${\pmb H}$, le rendement ${\pmb \eta}$ et la carctéristique du système hydraulique ${\pmb H}_s$ associé à une pompe sont donnés par les équations:

$$H = 20 + 0.8333Q - 0.1667Q^{2}$$

$$\eta = + 29.643Q - 3.2143Q^{2}$$

$$H_{s} = 10 + 2.116Q^{2}$$
(13)

La vitesse de rotation de la pompe est 1800~rpm, la charge est donnée en $m\`{e}tres$, le débit est exprimé en lt/s et le rendement en %.

- ullet a) Si la vitesse de rotation du rotor du même système est augmentée à 3600~rpm, quel sera le débit et quelle sera la pusissance au point d'opération?
- b) Quels seront les rpm necéssaires pour augmenter le débit à 1.7 fois la valeur à $1800 \ rpm$.

b): L'intersection de la courbe caractéristique de la pompe et celle du système hydraulique donnent un débit et une charge de:

$$Q = 2.283 \ l/s$$
 $H = 21.0341 \ m$

et le débit démandé:

$$Q_b = 1.7(2.283) = 3.882 \ l/s$$

et

$$H_b = 10 + 2.116 Q_b^2 = 41.88 l$$

Ce point, (3.882, 41.88), n'est pas similaire avec la condition $Q=2.283\ l/s$ puisque le lien se fait seulement par la courbe du système. Pour trouver une condition similare on utilise

$$\left(rac{m{Q}}{m{D}^3m{N}}
ight)_a = \left(rac{m{Q}}{m{D}^3m{N}}
ight)_b, \qquad \left(rac{m{g}m{H}}{m{N}^2m{D}^2}
ight)_a = \left(rac{m{g}m{H}}{m{N}^2m{D}^2}
ight)_b$$

Puisque D=cte, alors

$$\left(rac{m{Q}}{m{N}}
ight)_a = \left(rac{m{Q}}{m{N}}
ight)_b, \qquad \qquad \left(rac{m{H}}{m{N}^2}
ight)_a = \left(rac{m{H}}{m{N}^2}
ight)_b$$

et si on élimine N_a/N_b on trouve

$$\left(\frac{\boldsymbol{H}}{\boldsymbol{Q}^2}\right)_a = \left(\frac{\boldsymbol{H}}{\boldsymbol{Q}^2}\right)_b = \left(\frac{41.88}{3.882^2}\right)_b = 2.776$$

L'intersection de cette courbe avec avec la courbe pour la pompe à 1800 rpm donne ${\bf Qa}=2.7507$ et ${\bf Ha}=21.0316$, Alors:

$$\left(rac{oldsymbol{Q}}{oldsymbol{N}}
ight)_b = \left(rac{oldsymbol{Q}}{oldsymbol{N}}
ight)_a$$

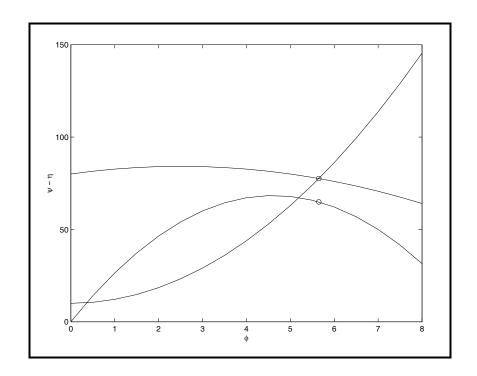
d'où:

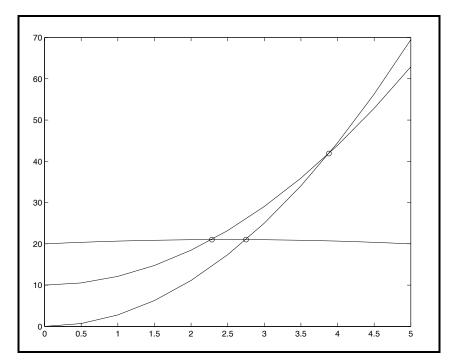
$$m{N}_b = m{N}_a rac{m{Q}_b}{m{Q}_a} = 1800 rac{3.882}{2.7507} = 25403 \; m{rpm}$$

aussi, a partir de

$$\left(rac{oldsymbol{H}}{oldsymbol{Q}^2}
ight)_a = \left(rac{oldsymbol{H}}{oldsymbol{Q}^2}
ight)_b$$

on a:


$$m{N}_b = m{N}_a \left(rac{m{H}_b}{m{H}_a}
ight)^{1/2} = 1800 \left(rac{41.88}{21.0316}
ight)^{1/2} = 25403 \ m{rpm}$$


Maintenant, le rendement est:

$$\eta = 29.643 Qa - 3.2143 Qa.^2 = 29.643(2.7507) - 3.2143(2.750)$$

Finalement,

$$\dot{W} = \frac{Q_b H_b \rho g}{\eta} = 2788 W$$

Similitude 2

Un ventilateur opère à 800rpm ayant un débit d'aire de $425m^3/min$. Il produit une augmentation de pression statique de 7.6 cm d' \boldsymbol{H}_{2O} et une variation de pression totale de 10 cm d' \boldsymbol{H}_{2O} . Le rendement total-à-total est de 75%. Les propriétés de l'aire à l'entrée sont: $\boldsymbol{T}_{01} = 20^o \boldsymbol{C}$ et $\boldsymbol{P}_{01} = 1~bar$.

On a un deuxième ventilateur géométriquement similaire ayant une grandeur 1/2 fois celle du premier. La vitesse de rotation de ce ventilateur est $1000 \ rpm$ et il opère sur un point homologue (par rapport au premier). On doit trouver:

 a) Le débit, la variation de pression statique, l'augmention de pression totale, et la puissance employée. Les conditions thermodynamiques pour l'air à l'entrée sont les mèmes pour les deux ventilateurs.

$$oldsymbol{\psi} = \left(rac{oldsymbol{Q}}{oldsymbol{D}^3oldsymbol{N}}
ight)_2 = \left(rac{oldsymbol{Q}}{oldsymbol{D}^3oldsymbol{N}}
ight)_2$$

alors

$$oldsymbol{Q}_2 = oldsymbol{Q}_1 \left(rac{oldsymbol{D}_2}{oldsymbol{D}_1}
ight)^3 \left(rac{oldsymbol{N}_2}{oldsymbol{N}_1}
ight)$$

$$m{Q}_2 = 425 \left(rac{1}{2}
ight)^3 \left(rac{1000}{800}
ight) = 66.4 m{m}^3/min$$

$$oldsymbol{\psi} = \left(rac{\Delta oldsymbol{P}_0}{oldsymbol{
ho} oldsymbol{N}^2 oldsymbol{D}^2}
ight)_2 = \left(rac{\Delta oldsymbol{P}_0}{oldsymbol{
ho} oldsymbol{N}^2 oldsymbol{D}^2}
ight)_1$$

$$\Delta \mathbf{P}_{02} = \Delta \mathbf{P}_{01} \left(\frac{\boldsymbol{\rho}_2}{\boldsymbol{\rho}_1} \right) \left(\frac{\boldsymbol{D}_2}{\boldsymbol{D}_1} \right)^2 \left(\frac{\boldsymbol{N}_2}{\boldsymbol{N}_1} \right)^2 = 10 \left(\frac{1}{1} \right) \left(\frac{1}{2} \right)^2 \left(\frac{1000}{800} \right)$$

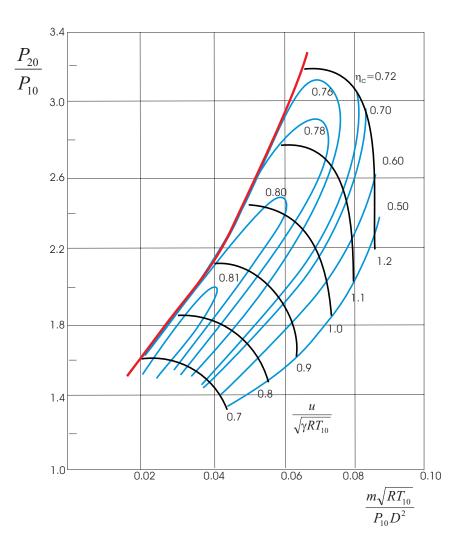
$$\left(rac{\Delta(oldsymbol{P}+oldsymbol{
ho}oldsymbol{V}^2/2}{oldsymbol{
ho}oldsymbol{N}^2oldsymbol{D}^2}
ight)_2=\left(rac{\Deltaoldsymbol{P}+oldsymbol{
ho}oldsymbol{V}^2/2}{oldsymbol{
ho}oldsymbol{N}^2oldsymbol{D}^2}
ight)_1$$

$$\left(\frac{\Delta \boldsymbol{P}}{\boldsymbol{\rho} \boldsymbol{N}^2 \boldsymbol{D}^2}\right)_2 + \left(\frac{\Delta (\boldsymbol{V}^2/2)}{\boldsymbol{N}^2 \boldsymbol{D}^2}\right)_2 = \left(\frac{\Delta \boldsymbol{P}}{\boldsymbol{\rho} \boldsymbol{N}^2 \boldsymbol{D}^2}\right)_2 + \left(\frac{\Delta (\boldsymbol{V}^2/2)}{\boldsymbol{N}^2 \boldsymbol{D}^2}\right)_1$$

Mais
$$\left(\frac{\Delta(\boldsymbol{V}^2/2)}{\boldsymbol{N}^2\boldsymbol{D}^2}\right)_2 = \left(\frac{\Delta(\boldsymbol{V}^2/2)}{\boldsymbol{N}^2\boldsymbol{D}^2}\right)_1$$
 Pourquoi?

$$\Delta \boldsymbol{P}_2 = \Delta \boldsymbol{P}_1 \left(\frac{\boldsymbol{\rho}_2}{\boldsymbol{\rho}_1} \right) \left(\frac{\boldsymbol{D}_2}{\boldsymbol{D}_1} \right)^2 \left(\frac{\boldsymbol{N}_2}{\boldsymbol{N}_1} \right)^2 = 7.6 \left(\frac{1}{1} \right) \left(\frac{1}{2} \right)^2 \left(\frac{1000}{800} \right)$$

$$\dot{\mathbf{W}} = \frac{\Delta \mathbf{P}_0 \mathbf{Q}}{\eta} = \dot{\mathbf{W}} = \frac{0.039 \ 1000 \ 9.81 \ 66.4/60}{0.75} = 564 \ \mathbf{W}$$


Similitude 3

Un compreseur centrifuge fonctionne au point nominal. Le rotor a un diamètre de 40~cm et le rapport de pression totale est $P_{02}/P_{01}=2$. Les conditions à l'entrée sont $T_{01}=20^{o}C$ et $P_{01}=1~bar$. Déterminer:

- Le débit massique
- La puissance requise
- Le vitessse angulaire
- Le diamètre et la vitesse spécifique

D'après la carte du compresseur

$$\frac{\dot{m}\sqrt{RT_{10}}}{P_{01}D^2} = 0.04, \qquad \eta = 0.81$$

a) Le débit massique

$$\dot{m} = \frac{0.04 \times 10^5 \times (0.4)^2}{\sqrt{8314/28.97 \times 293}} = 2.21 \ kg/s$$

b) La puissance

$$m{T}_{02s} = \left(rac{m{P}_{02}}{m{P}_{01}}
ight)^{\gamma-1/\gamma} m{T}_{01} = 2^{0.4/1.4}293 = 357m{K}$$

Le rendement

$$\eta = \frac{T_{02s} - T_{01}}{T_{02} - T_{01}} = \frac{357 - 293}{T_{02} - 293} = 0.81 \rightarrow T_{02} = 372$$

$$\dot{W} = \frac{\dot{m}\gamma R}{\gamma - 1} (T_{02} - T_{02}) = 2.21 \times (1.4/0.4) \times (8314/28.97)(372 - 1)$$

b) La vitesse angulaire

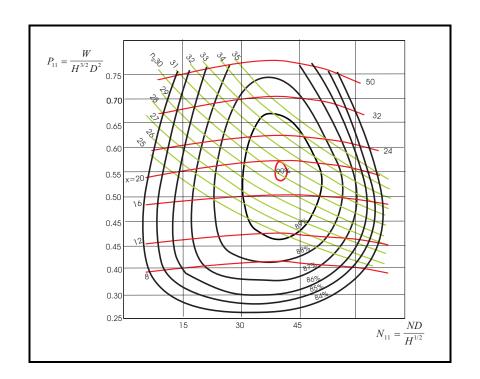
Encore, d'après la carte du compresseur:

$$\frac{DN}{2\sqrt{\gamma RT_{10}}} = 0.85$$

$$DN = 0.852\sqrt{\gamma RT_{10}} = 0.85 \times 2\sqrt{1.4R293} = 584m/s$$

$$N = DN/D = 584m/s/0.4m = 1460rad/s = 1400rpm$$

b) Diamètre et vitesse spécifique


$$m{D}_s = \left(rac{m{D}m{W}_e^{1/4}}{m{Q}^{1/2}}
ight) = \left(rac{m{D}m{W}_e^{1/4}}{(\dot{m{m}}/m{
ho})^{1/2}}
ight) = 4.7$$

$$oldsymbol{N}_s = \left(rac{oldsymbol{N}(\dot{oldsymbol{m}}/oldsymbol{
ho})^{1/2}}{oldsymbol{W}_e^{3/4}}
ight)$$

$$oldsymbol{W}_e = rac{oldsymbol{\gamma} oldsymbol{R} oldsymbol{T}_{01}}{oldsymbol{\gamma} - 1} \Bigg \lceil \left(rac{oldsymbol{p}_{02}}{oldsymbol{p}_{01}}
ight)^{(\gamma-1)/\gamma} - 1 \Bigg
brace$$

$$N_s = 0.534$$

On propose la construction d'une turbine de type Pelton ayant les mêmes caractéristiques d'un design connu. Les paramètres de vitesse et de puissance sont donnés par une carte de rendement. Sur l'axe des abscisses on trouve le regroupement $\frac{ND}{H^{1/2}}$ tandis sur l'axe des ordonnées on trouve le coefficient $\frac{W}{H^{3/2}D^2}$ Le rendement η et la vitesse spécifique N_s (dimensionnelle dans le système métrique) sont représentés par des isocontours. La charge ou chute nette pour l'aménagement hydroeléctrique est de H=300m et la puissance produite par la roue est W=20~000~kW. Considérez un seul injecteur et sur la base du point de design (le point nominal), déterminez: la vitesse de rotation, le diamètre du jet de l'injecteur et le diamètre de la roue.

À partir de la colline de rendement, on a pour le point nominal:

$$m{\eta} = 0.9, \qquad \quad ar{m{N}_s} = 30 \qquad \quad rac{m{N}m{D}}{m{H}^{1/2}} = 40$$

Alors, d'après:

$$\bar{N}_s = 30 = \frac{N \times W^{1/2} (en \ CV)}{M^{5/4}} = \frac{N \times 20 \ 000 \times 1.359^{1/2}}{300^{5/4}}$$

on trouve:N=227 rpm.

Pour trouver le diamètre du jet on cherche la vitesse du jet et le débit. Si on considère un écoulement sans pertes entre le niveau du lac et l'injecteur on a:

$$v = \sqrt{2gH} = \sqrt{2.81 \times 300} = 76.7m/s$$

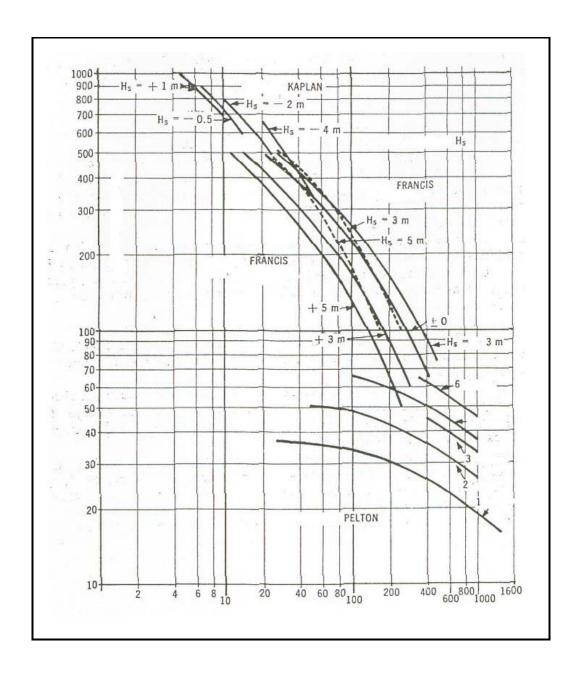
Le debit est trouvé par la relation $oldsymbol{W}=\eta
ho g H Q$, alors

$$Q = \frac{20\ 000 \times 10^3}{0.9 \times 300 \times 9.81 \times 1000} = 7.64\ m^3/s$$

Alors, selon l'équation de continuité: ${m Q}={m V}{m A}$. Si on considère un jet cylindrique avec ${m A}=\pi~{m d}^2/4$ on trouve

$$d = \frac{4Q}{\pi V} = 0.356 \ m$$

Finalement, à partir du coefficient:


$$\frac{ND}{H^{1/2}} = 40$$

on trouve

$$D = \frac{40 \times H^{1/2}}{N} = \frac{40 \times 300^{1/2}}{227} = 3.57m$$

Similitude 5

Une turbine Francis opère avec une charge de 60~m avec un debit de $30m^3/s$. Estimez les rpm et le dimètre de la roue si le rendement est $\eta=88\%$.

$$n_s = 260 \; (carte), \qquad
ho g = \gamma = 1000 kg/m^3$$

$$oldsymbol{n}_s = rac{oldsymbol{N}\dot{oldsymbol{W}}^{1/2}}{oldsymbol{H}^{5/4}}$$

$$\dot{W}(HP) = \frac{\eta \rho g Q H}{76} = \frac{0.88 \times 1000 \times 30 \times 60}{76} = 21\ 000$$

$$oldsymbol{N} = rac{oldsymbol{n}_s oldsymbol{H}^{5/4}}{\dot{oldsymbol{W}} (oldsymbol{HP})^{1/2}}$$

$$\pi DN/60 = \sqrt{2gH}$$

$$\boldsymbol{D} = \frac{\sqrt{2g\boldsymbol{H}}}{\boldsymbol{\pi}\boldsymbol{N}/60}$$

Similitude 6

Estimez le diamètre et la vitesse de rotation d'un ventilateur faisant circuler $4.8m^3/s$ d'air ($\rho=1.21kg/m^3$ et avec un $\Delta P=500$ Pa. Considérez $N_s=5$.

$$oldsymbol{N}_s = rac{oldsymbol{N}oldsymbol{Q}^{1/2}}{(\Deltaoldsymbol{P}/oldsymbol{
ho})^{3/4}}$$

$$oldsymbol{N} = oldsymbol{N}_s rac{(\Delta oldsymbol{P}/oldsymbol{
ho})^{3/4}}{oldsymbol{Q}^{1/2}} = 250 \; oldsymbol{rad} \;
ightarrow \; 2387 \; oldsymbol{rpm}$$

$$oldsymbol{D}_s = rac{oldsymbol{D}(\Delta oldsymbol{P}/oldsymbol{
ho})^{1/4}}{oldsymbol{Q}^{1/2}}$$

$$D_s = 2.84 N_s^{-0.476} = 1.32$$

Turboréacté

Un turboréacteur opère avec de l'air à capacité calorifique constante Les données sont

- La température et la pression à l'entrée du compresseur $T_{02}=288 K$, $p_{02}=0.1 \ MPa$.
- Le rendement du compresseur (C) $\eta_c = 85\%$.
- Le rendement de la turbine (**T**) $\eta_{tp} = 0.9\%$.
- ullet Le rapport de compression $oldsymbol{r}_p = oldsymbol{p}_{03}/oldsymbol{p}_{02} = 10$
- ullet La température $maximale~m{T}_{max}=1200~m{K}$.
- ullet Pouvoir calorifique inférieur du combustible $oldsymbol{L}_{hv}=44000oldsymbol{KJ/kg}$
- Le rendements mécaniques du compresseur et de la turbine $\eta_m=0.98$
- Le rendement de la tuyère $\eta_{Ty}=0.98$

Calculez

- ullet Les sommets (\mathbf{p}, \mathbf{T}) du cycle thermodynamique
- Le rapport 1/f : débit massique d'air/ débit massique de combustible
- Le rendement du turboréacté
- la consommation spécifique TSFC

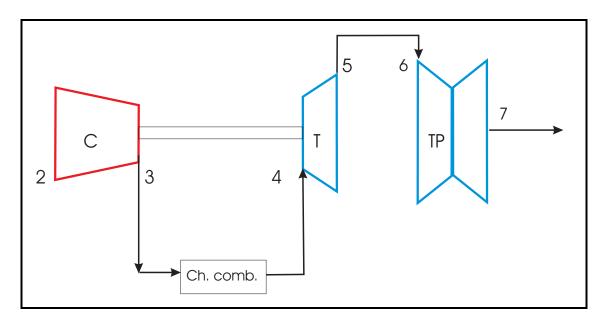


Figure 7: Turbomoteur générique

Sortie du compresseur: 3

$$r_p = rac{m{p}_{03}}{m{p}_{02}} = 10$$

$$oldsymbol{p}_{03}\!=\!oldsymbol{r}_p imesoldsymbol{p}_{02} \ ooldsymbol{p}_{03}\!=10 imes0.1oldsymbol{MPa}=1oldsymbol{MPa}$$

Température reélle

$$egin{aligned} rac{oldsymbol{T}_{03s}}{oldsymbol{T}_{02}} = \left(rac{oldsymbol{p}_{03}}{oldsymbol{p}_{02}}
ight)^{rac{\gamma-1}{\gamma}} &
ightarrow oldsymbol{T}_{03s} = 556.4 \; oldsymbol{K} \end{aligned}$$

$$m{\eta}_c = rac{m{T}_{03s} - m{T}_{02}}{m{T}_{03} - m{T}_{02}} \,
ightarrow m{T}_{03} = 603.8$$

Chambre de combustion

$$p_{04} = p_{03} = 1MPa$$
, $T_{04} = 1200 K$

Bilan enthalpique

$$\frac{\boldsymbol{m}_a}{\boldsymbol{m}_f} \boldsymbol{h}_3 + \boldsymbol{h}_c + \boldsymbol{L}_{hv} = \left(1 + \frac{\boldsymbol{m}_a}{\boldsymbol{m}_f}\right) \boldsymbol{h}_4$$

$$m{lpha} = rac{m{m}_a}{m{m}_f} = rac{m{L}_{hv}}{m{c}m{p}(m{T}_{04} - m{T}_{03})} - 1 = 74$$

Turbine

$$ar{m{w}}_T = ar{m{w}}_c$$

$$\frac{\alpha c_p (T_{03} - T_{02})}{\eta_m} = (\alpha + 1) c_p (T_{04} - T_{05}) \eta_m \rightarrow T_{05} = 873 K$$

$$m{\eta}_T = rac{m{T}_{04} - m{T}_{05}}{m{T}_{04} - m{T}_{05s}} = 0.9 \ o m{T}_{05s} = 836.7 m{K}$$

$$egin{aligned} rac{oldsymbol{T}_{04}}{oldsymbol{T}_{05s}} = \left(rac{oldsymbol{p}_{03}}{oldsymbol{p}_{05}}
ight)^{rac{\gamma-1}{\gamma}} &
ightarrow oldsymbol{p}_{05} = 0.283 egin{aligned} oldsymbol{MPa} \end{aligned}$$

$$egin{aligned} rac{oldsymbol{T}_{05}}{oldsymbol{T}_{7s}} = \left(rac{oldsymbol{p}_{05}}{oldsymbol{p}_{7}}
ight)^{rac{\gamma-1}{\gamma}} &
ightarrow oldsymbol{T}_{7s} = 648.3 \,\, oldsymbol{K} \end{aligned}$$

$$m{\eta}_{Ty} = rac{m{T}_{05} - m{T}_7}{m{T}_{05} - m{T}_{7s}} = 0.95 \ o m{T}_7 = 652.8 \ m{K}$$

$$\frac{{m u}_7^2}{2} = {m C}_p({m T}_{05} - {m T}_7) \ o \ {m u}_7 = 665 \ {m m/s}$$

$$oldsymbol{\eta}_{th} = rac{oldsymbol{lpha} imes oldsymbol{u}_{7}^2}{oldsymbol{L}_{hv}} = oldsymbol{\eta}_{th} = 0.36$$

Poussée

$$TSFC = \frac{3600}{\alpha \times u_7} = 0.0736 \frac{kg_{cb}/heure}{N}$$

Turboréacté

Un turboréacteur opère avec de *l'air standard* (la capacité calorifique est variable). Les données sont

- La température et la pression à l'entrée du compresseur $T_2 = T_{02} = 288K(519R)$, $p_2 = 101.3 \ kPa(14.7 \ psia)$.
- Le rendement du compresseur (**C**) $\eta_c = 87\%$. Le rendement de la turbine de génération (**T**) $\eta_{tg} = 89\%$ Le rendement de la turbine de puissance (**TP**) $\eta_{tp} = 89\%$.
- ullet Le rapport de compression $m{r}_p=m{p}_3/m{p}_2=12$ La température à l'entrée de la turbine $m{T}_4=1400~m{K}(2520~m{R})$.
- Le débit massique d'air $\dot{m} = 1 \ kg/s(1 \ lb/s)$.

Calculez

• La **pression** et la **température** à la sortie de la turbine de génération

• Le **travail**, utile, la **chaleur** ajoutée et le **rendement** du cycle. Considérez que la pression demeure constante lors de la combustion et que la pression à la sortie est $p_6 = p_2 = 101.3kPa(14.7 \ psia)$).

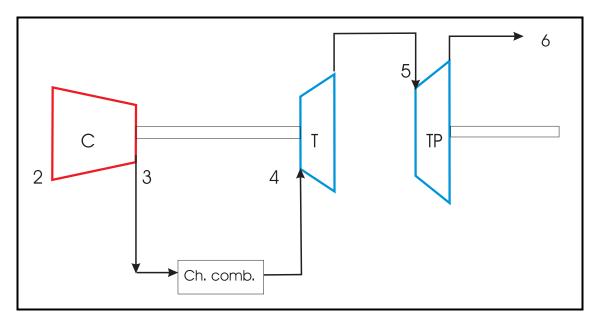


Figure 8: Turbomoteur générique

Entrée du compresseur: ② À partir de la table $(\boldsymbol{T}, \boldsymbol{h}, \boldsymbol{p}_r)$ pour $\boldsymbol{T}_2 = 519\boldsymbol{R}$ on trouve:

$$h_2 = -173.7 \ BTU/lbmol \ p_{r2} = 1.2095$$

Sortie du compresseur: 3

$$rac{oldsymbol{p}_{r3}}{oldsymbol{p}_{r2}} \hspace{1cm} = \hspace{1cm} oldsymbol{r}_p = rac{oldsymbol{p}_3}{oldsymbol{p}_2} = 12$$

$$p_{r3} = 14.51 \rightarrow T_3 = 1046 \ R \ h_3 = 3547 \ BTU/lbmol$$

Travail spécifique du compresseur

$$p_3 = p_2 r_p = 14.7 * 12 = \boxed{p_3 = 176.40 \ psia}$$

$$ar{m{w}}_{cs}\!=m{h}_3\!-\!m{h}_2=\!oxedown_{cs}\!=3721\;m{BTU/lbmo}\!m{l}$$
 T. idéal

$$ar{m{w}}_{cr}=rac{ar{m{w}}_{cs}}{m{\eta}_c}=rac{3721}{0.87}= oxed{m{w}}_{cr}=4277~m{BTU/lbmol}$$
 T. réel

Enthalpie à la sortie du compresseur

$$egin{array}{cccc} m{h}_{3r} = m{h}_3 + ar{m{w}}_{cr} &=& m{h}_{3r} = 4103 \; m{BTU/lbmol} \ m{Table} &
ightarrow m{T}_{2r} = 1122 \; m{R} \end{array}$$

Entrée de la turbine de génération 4

$$\bar{\boldsymbol{w}}_{Tgr} = \bar{\boldsymbol{w}}_{cr} = 4277 \; \boldsymbol{BTU/lbmol}$$

$$ar{m{w}_{Tgs}}=rac{ar{m{w}_{Tgr}}}{m{\eta}_{Tg}}=4805~m{BTU/lbmol}$$
 $m{T}_4=2520~m{R}~
ightarrow egin{bmatrix} m{h}_4=15108~m{BTU/lbmol}, &m{p}_{r4}=451 \end{bmatrix}$

Sortie de la turbine de génération 5

$$egin{array}{lcl} m{h}_{5r} = m{h}_4 - ar{m{w}}_{Tgr} &=& 15108 - 4277 \ &=& m{h}_{5r} = 10831 m{BTU/lbmol} \ m{Table} &
ightarrow m{T}_{5r} = 1996 \ m{R} \ , \ m{p}_{r5r} = 173.3, \end{array}$$

$$egin{array}{lll} m{h}_{5s} = m{h}_4 - ar{m{w}}_{Tgs} &=& 15108 - 4805 \ &=& m{h}_{5s} = 10303 m{BTU/lbmol} \ m{Table} &
ightarrow & m{,} \ m{p}_{r4r} = 151.3, \end{array}$$

$$egin{aligned} rac{oldsymbol{p}_{r5}}{oldsymbol{p}_{r4}} = rac{oldsymbol{p}_5}{oldsymbol{p}_4}
ightarrow oldsymbol{p}_5 = oldsymbol{p}_4 \left(rac{oldsymbol{p}_{r5s}}{oldsymbol{p}_{r4}}
ight) = 176.4 \left(rac{151.3}{451}
ight) \
ightarrow oldsymbol{p}_5 = 59.2 \; oldsymbol{psia} \end{aligned}$$

$$\frac{p_{r6s}}{p_{r5}} = \frac{p_6}{p_5} \rightarrow p_{r6s} = p_{r5r} \left(\frac{p_6}{p_5}\right) = 173.3 \left(\frac{14.7}{59.2}\right) = 43.03$$
 $\rightarrow h_{6s} = 6172.5 \; BTU/lbmol$

Sortie de la turbine de puissance ®

$$ar{m{w}_{Tpr}} = m{\eta}_{tp}(m{h}_{5r} - m{h}_{6s}) = 0.89(10831 - 6172.5) = \ ar{m{w}_{Tpr}} = 4147 \ m{BTU/lbmo} m{l}$$

$$egin{aligned} m{h}_{6r} &= m{h}_{5r} - ar{m{w}}_{Tpr} = 10831 - 4147 = \ m{h}_{6r} &= 6684 \; m{BTU/lbmo} m{l}
ightarrow m{T}_{6r} = 1467 \; m{R} \end{aligned}$$

Efficacité thermique

Énergie ajoutée dans la chambre de combustion

$$q_{ch} = h_4 - h_{2r} = 15108 - 4103 =$$
 $q_{ch} = 11005 \; BTU/lbmol$

Efficacité thermique

$$m{\eta}_{th} = rac{ar{m{w}}_{Tpr}}{m{q}_{ch}} = rac{4147}{11005} = oxed{\eta}_{th} = 0.3768$$

Turboréacté +

La turbine de puissance est remplacée par une tuyère convergente-divergente et les gaz atteignent les conditons atmosphériques à la sortie. Calculez:

- La poussée et le rendement. Le rendement de la tuyère est $\eta_t=100\%$, la vitesse à l'entrée $v_e=0$ et q=11005BTU/mol.
- ullet Le TSFC si f=0.0215 et $\dot{m}_a=1lb/s$

$$\frac{u_{6s}^2}{2} = h_{5r} - h_{6s} = (10831 - 6172.5) = 4658 \, BTU/lbmol$$

$$m{h}_{6s} = 6172.5 \; m{BTU/lbmol} \quad
ightarrow \quad m{T}_{5s} = 1400 \; m{R}$$

$$egin{aligned} m{u}_{6s} &= \sqrt{rac{2 imes 32.2 imes 778 (m{h}_{5r} - m{h}_{6s})}{m{M}_{air}}} \ &= \sqrt{rac{2 imes 32.2 imes 778 (10831 - 6172)}{29.96}} \end{aligned}$$

$$u_{6s} = 2838 \ pi/s$$

$$m{F}_p = rac{2828 imes 1}{32.2} = oxed{F} = 88.2 lbf$$

 $E\!f\!f\!icacit\'e$

Rendement

$$\eta_{th} = \frac{(V_{5c}^2/2(1+f))}{32.2 \times 778 \times q_{ch}/M_{air}} = 0.423$$

$$f = m_f/m_a = 0.0215$$
, alors

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Remarque: La combustion stoechiométrique du C_8H_{18} exige 12.5 mol de 0_2 par mol de C_8H_{18} . Pour l'air ayant 0.2095 mol de 0_2 par mol d'air on a:

$$\frac{12.5}{0.2095} = x_s = 59.67 \frac{mol \ d'air}{mol \ de \ C_8 H_{18}}$$

Alors, le rapport stoechiométrique massique $(\boldsymbol{m}_f/\boldsymbol{m}_a)$ est:

$$\frac{114.23}{28.96 \times 59.67} = \boxed{f/A = 0.0661}$$

Turbosoufflante

Une turbosoufflante opère aux mêmes conditions antérieures. Calculez la poussée spécifique et le rendement thermique si BPR=2 (taux de dilution), $p_{rf}=1.35$ (le rapport de pression pour la soufflante) et $\eta_f=1.35$ (le rendement de la soufflante). Calculez:

• La poussée, la TSFC et le rendement thermodynamique

On connaît

- $\bar{\boldsymbol{w}}_{cr} = 4277 \; \boldsymbol{BTU/lbmol}$
- f = 0.0215
- $\dot{m}_a = 1 lb/s$,
- $p_3 = 176.4 \ psia$, $q_c = 11005 \ BTU/lbmol$

Des tables on trouve pour

$$T=519~R~\rightarrow$$

$$p_{r1} = 1.2095, \ h_2 = -173.7 \ BTU/lbmol$$

Pour la soufflante

$$p_{r2-f} = p_{rf} * p_r 1 = 1.35 * 1.209 = 1.6328 \rightarrow$$

$$h_{2sf} = 149.2 \; Btu/mol$$

$$\bar{\boldsymbol{w}}_{fr} = \frac{\bar{\boldsymbol{w}}_{fs}}{\eta_f} = \frac{\boldsymbol{h}_{2s-f} - \boldsymbol{h}_2}{\eta_f} = \frac{149.2 + 173.7}{0.85} = 380 \ \boldsymbol{BTU/lbm}$$

Enthaplie aprés la soufflante

$$egin{aligned} m{h}_{2rf} &= m{h}_2 + ar{m{w}}_{cr} &= egin{bmatrix} m{h}_{2r} &= 206.2 \; m{BTU/lbmol} \ m{Table} &
ightarrow m{p}_{2r} &= 1.7170 \end{bmatrix}$$

$$p_{r5-f} = p_{r2f}/p_{rf} = 1.710/1.35 = 1.2719 \rightarrow$$

$$oldsymbol{h}_{5sf} = -121.6 \,\, oldsymbol{Btu/mol}$$

$$m{w}_{tg} = rac{ar{m{w}}_{cr} + m{BPR} imes ar{m{w}}_{fr}}{1 + m{f}}$$

$$oldsymbol{w}_{tg} = 2931 oldsymbol{BTU/mol}$$

$$egin{aligned} m{u}_{5s} &= \sqrt{rac{2 imes 32.2 imes 778 (m{h}_{2r} - m{h}_{5s})}{m{M}_{air}}} \ &= \sqrt{rac{2 imes 32.2 imes 778 (206 - 121.6)}{28.96}} \end{aligned}$$

$$oldsymbol{u}_{5sf}=753~oldsymbol{pi/s}$$

avec BPR=2

$$ar{m{w}}_{fr} = rac{m{BRP}*ar{m{w}}_{fs} + ar{m{w}}_{cr}}{1 + f} = = 4931\,m{BTU/lbmol}$$
 W réel

Également.....

$$oxed{u_{5sc}=2605~pi/s}$$

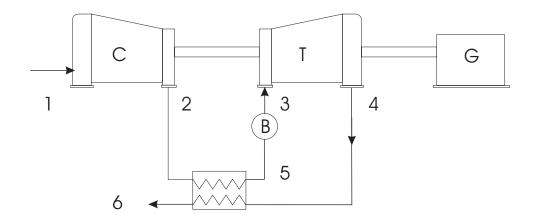
$$m{F}_p = rac{m{BPR}*m{u}_{5sf} + (1+m{f})*m{u}_{5sc}}{32.2}$$

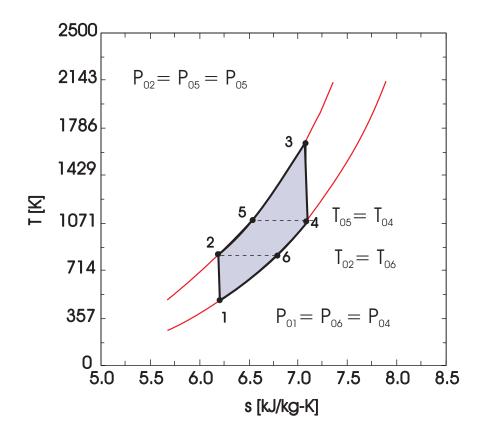
$$m{F}_p = rac{2*753 + (1.0215*2605}{32.2} = oxed{F} = 129.5 m{lbf}$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$oldsymbol{\eta} = rac{(1+oldsymbol{f}) imes(oldsymbol{u}_{5sc})^2/2 + oldsymbol{BPR} imes(oldsymbol{u}_{5sf})^2/2}{oldsymbol{q}_c} =$$

$$\eta = \frac{((1.0215) \times (2605)^2/2 + 2 \times (753)^2/2)/32.2 \times 778}{1105/28.95}$$
= 0.416


Turbine à gaz avec échangeur; cycle idéal


Une turbine à gaz opère avec de l 'air a $c_p = cte$. Les données sont

- La température et la pression à l'entrée du compresseur C est $T_1 = 288 K$, $p_1 = 0.1 MPa$.
- Le rapport de compression $r_c = 8$
- ullet La température à la sortie de la Ch. de Cb. ${m T}_4=1500~{m K}$.
- $T_4 T_6 = T_4 T_2$
- ullet Le débit massique d'air $\dot{m}=1~kg/s$.

Calculez

- Les coordonnées (T, P) du cycle
- l'efficacité thermique

$$\boldsymbol{p}_2 = \boldsymbol{p}_1 \times \boldsymbol{r}_p = 0.8 \; \boldsymbol{MPa}$$

$$rac{oldsymbol{T}_2}{oldsymbol{T}_1} = \left(rac{oldsymbol{p}_2}{oldsymbol{p}_1}
ight)^{rac{\gamma}{\gamma-1}}$$

$$\rightarrow T_2 = 522 K$$

$$p_4 = p_1 = 0.1 MPa$$

$$rac{oldsymbol{T}_3}{oldsymbol{T}_4} = \left(rac{oldsymbol{p}_3}{oldsymbol{p}_4}
ight)^{rac{\gamma}{\gamma-1}}$$

$$\rightarrow T_4 = 827.6$$

$$W = w_t - w_c = C_p(T_3 - T_4) - C_p(T_2 - T_1) = 440.4 kJ/kg$$

$$Q = Cp(T_3 - T_5)$$

$$\eta = \frac{W}{Q_c} = \frac{C_p(T_3 - T_4) - C_p(T_2 - T_1)}{Cp(T_3 - T_5)} = 0.65$$

Turbine à gaz avec refroidissement

Une turbine à gaz opère avec de l 'air standard. Les données sont

- La température et la pression à l'entrée du compresseur C_1 $T_1 = 288 K$ et $p_1 = 101.3$ kPa.
- Le rendement des compresseurs (C) $\eta_c = 87\%$.
- Le rendement des turbines (**T**) $\eta_{tg} = 89\%$
- ullet Pression à la sortie du premier compresseur $oldsymbol{C}_1$ $oldsymbol{p}_2=351 oldsymbol{k} oldsymbol{P} a=oldsymbol{p}_{2a}$
- ullet Pression à la sortie du compresseur $oldsymbol{C}_2$ $oldsymbol{p}_{2b}=1216~oldsymbol{kPa}$
- ullet La température à l'entrée du compresseur $oldsymbol{C}_2$ $oldsymbol{T}_{2a}=288$ $oldsymbol{K}$
- ullet La température à la sortie de la Ch. de Cb. ${m T}_4=1400~{m K}$.

ullet Le débit d'air $\dot{m}=1$ mol/s.

Calculez

- La pression optimale d'opération pour le refroidisseur
- Le travail total de compression
- Le travail net
- L'efficacité thermique
- La consommation spécifique

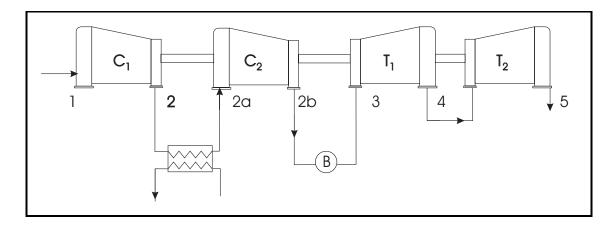


Figure 9: Turbomoteur

Pression idéale: 2

$$p = \sqrt{p_1 p_2} = 351 \ kPa$$

Compresseur C_1 : ② À partir de la table (T, h, p_r) pour $T_2 = 288k$ on trouve:

$$h_1 = -413.4 \ kJ/kmol \quad p_{r1} = 1.2055$$

Sortie du compresseur: 3

$$p_{r2} = p_{r1} \frac{p_2}{p_1} = 4.176 = \boxed{p_{r2} = 4.176}$$

$$p_{r2} = 4.176 \rightarrow h_2 = 3160$$

$$ar{oldsymbol{w}_{c1r}} = rac{oldsymbol{h}_2 - oldsymbol{h}_1}{oldsymbol{\eta}_c} = egin{bmatrix} ar{oldsymbol{w}_{cs}} = 4107 \ oldsymbol{kJ/kmol} \end{pmatrix}$$

$$h_2 = h_1 + w_{c1r} = 3694 \ kJ/kmol \rightarrow T_2 = 428K$$

Compresseur C_2 : Le rapport de pression $r_p = 3.46$ pour C_1 et C_2 est le même. Le rendement $\eta = 0.89$ est le même pour les deux compresseures et la température d'entrée est encore la même, alors

$$egin{array}{lll} m{w}_{c2r} &=& 4107 \; m{kJ/kmol} \ m{h}_{2b} &=& 3694 \; m{kJ/kmol} \ m{T}_{2b} &=& 428 \; m{K} \end{array}$$

$$oldsymbol{w}_{c-tot} = oldsymbol{w}_{c1r} + oldsymbol{w}_{c2r}
ightarrow oldsymbol{ar{w}}_{ctot} = 8214 \; oldsymbol{kJ/kmol}$$

Turbine de génération T_1 ④

$$egin{array}{lll} m{T}_{3r} &
ightarrow & m{Table}
ightarrow \ m{h}_{3r} & = & 35118.8 \ m{kJ/kmol} \ m{P}_{r3} & = & 450.9 \ ar{m{w}}_{Tg-r} & = & 8214 \ m{kJ/kmol} \ ar{m{w}}_{Tg-s} & = & rac{ar{m{w}}_{Tg-r}}{m{\eta}_{Tg}} = 92295 \ m{kJ/kmol} \end{array}$$

Sortie de la turbine de génération 5

$$egin{array}{lll} m{h}_{4s} = m{h}_3 - ar{m{w}}_{Tg-s} &=& m{h}_{4s} = 25889 m{kJ/kmol} \ m{Table} &
ightarrow m{p}_{r4-s} = 187 \ m{h}_{4r} = m{h}_3 - ar{m{w}}_{Tg-r} &=& m{h}_{4r} = 26905 m{kJ/kmol} \ m{Table} &
ightarrow m{p}_{r4-r} = 208 \end{array}$$

$$\frac{p_{r4}}{p_{r3}} = \frac{p_4}{p_3} \rightarrow p_4 = p_3 \left(\frac{p_{r4}}{p_{r3}}\right) = 1216 \left(\frac{187}{450.9}\right)$$

$$\rightarrow \boxed{m{p}_4 = 504.3 \ m{kPa}}$$

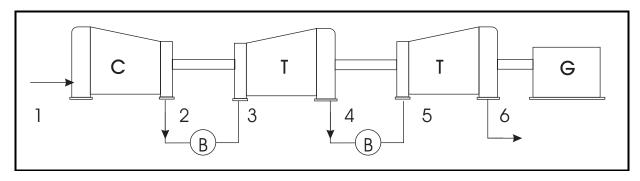
Turbine T_2

$$\frac{p_{r5s}}{p_{r4-r}} = \frac{p_5}{p_4} \rightarrow p_{r5s} = p_{r5r} \left(\frac{p_6}{p_5}\right) = 208 \left(\frac{101.3}{504.3}\right) = 41.8$$
 $\rightarrow h_{5s} = 14160 \ kJ/kmol$

$$\bar{w}_{Tpr} = \eta_{tp}(h_{4r} - h_{56s}) = 0.89(26905 - 14160) =$$
 $\bar{w}_{Tpr} = 11343 \ kJ/kmol$

Efficacité thermique

Énergie ajoutée dans la chambre de combustion

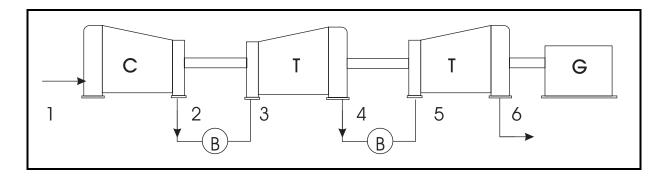

$$egin{aligned} oldsymbol{q}_{ch} &= oldsymbol{h}_3 - oldsymbol{h}_{2b} = \ oldsymbol{q}_{ch} &= 31245 \; oldsymbol{kJ/kmol} \end{aligned}$$

Efficacité thermique

$$\eta_{th} = \frac{\bar{w}_{Tpr}}{q_{ch}} = \frac{11343}{31245} = \boxed{\eta_{th} = 0.361}$$

$$SFC = \frac{3600}{\eta L_{HV}} = \frac{3600}{0.361 \times 42798 kJ/kg} = 0.233 \ kJ/kW \ h$$

Turbine à gaz avec resurchauffe


Une turbine à gaz avec resurchauffe opère avec de l'air standard. Les données sont

- La température et la pression à l'entrée du compresseur C est $T_1 = 288 K$, $p_1 = 101.3 \ kPa$.
- Le rendement du compresseur (C) $\eta_c = 87\%$
- ullet Pression à la sortie du compresseur $oldsymbol{p}_2=1216~oldsymbol{kPa}$
- Le rendement des turbines (**T**) $\eta_{tg} = 89\%$
- ullet La température à la sortie des Chs. de Cb. $oldsymbol{T}_3 = oldsymbol{T}_5 = 1400~oldsymbol{K}$.
- ullet Le débit d'air $\dot{m} = 1 \; mol/s$.

Calculez

- La pression optimale d'opération pour le refroidisseur
- Le travail total de compression
- Le travail net
- l'efficacité thermique
- La consommation spécifique

Turbine à gaz avec resurchauffe

Pression idéale: 2

$$p = \sqrt{p_1 p_2} = 351 \ kPa$$

Compresseur C_1 : À partir de la table (T, h, p_r) pour $T_1 = 288K$ on trouve:

$$h_1 = -413.7 \ kJ/kmol \ p_{r1} = 1.2055$$

Sortie du compresseur: 3

étapes...

$$oldsymbol{p_{r2}} = oldsymbol{p_{r1}} rac{oldsymbol{p_2}}{oldsymbol{p_1}} = oldsymbol{p_{r2}} = 14,47 oldsymbol{1} o oldsymbol{T_2} = 428oldsymbol{K}$$

 $h_2 = 8230 \ kJ/kmol$

$$w_{cs} = h_2 - h_1 = 8230 + 413 = 8643$$

$$w_{cr} = \frac{w_{cs}}{\eta_t} = \frac{8643}{0.87} = 9936$$

$$w_{Tgr} = w_{cr} = 9936 \ kJ/kmol$$

$$w_{Tgs} = \frac{w_{tgr}}{\eta_t} = 11163 \ kJ/kmol$$

$$h_4 = h_3 - w_{Tgs} = 23955 \ kJ/kmol \
ightarrow p_{r4} = 151.4$$

$$m{p}_4 = m{p}_3 rac{m{p}_{r5}}{m{p}_{r3}} = oxed{m{p}_4 = 408 \, m{kPa}}$$

$$egin{aligned} m{p}_4 &= m{p}_5 = 408 \ m{kPa} \ m{T}_4 &= m{T}_5 = 1400 \ m{K} \ m{h}_5 &= 35119 m{kJ/kmol} \end{aligned}$$

$$w_c = 9935kJ/kmol$$

$$p_{r5} = 450.9$$

$$m{p_{r6}} = m{p_{r5}} rac{m{p_6}}{m{p_5}} = 111.9 = \boxed{m{pr5} = 111.9}$$

$$p_{r6} = 111.9 \rightarrow h_{6s} = 21362$$

$$ar{oldsymbol{w}_{tpr}} = (oldsymbol{h}_5 - oldsymbol{h}_{6s})oldsymbol{\eta}_c = egin{bmatrix} ar{oldsymbol{w}_{tpr}} = 12243 \ oldsymbol{kJ/kmol} \end{pmatrix}$$

Efficacité thermique

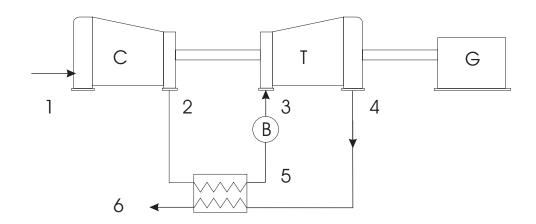
Énergie ajoutée dans la chambre de combustion

$$egin{aligned} oldsymbol{q}_{ch} &= (oldsymbol{h}_5 - oldsymbol{h}_4) + (oldsymbol{h}_3 - oldsymbol{h}_2) = \ oldsymbol{q}_{ch} &= 35532 \; oldsymbol{kJ/kmol} \end{aligned}$$

Efficacité thermique

$$m{\eta}_{th} = rac{ar{m{w}}_{Tpr}}{m{q}_{ch}} = rac{12243}{35532} = oxedsymbol{\eta}_{th} = 0.345$$

$$SFC = \frac{3600}{\eta L_{HV}} = \frac{3600}{0.345 \times 42798 kJ/kg} = 0.2438 \ kJ/kW \ h$$


Turbine avec régénérateur

Une turbine à gaz avec un régénérateur opère avec de l'air standard. Les données sont

- La température et la pression à l'entrée du compresseur C: $T_1 = 0^o C$, $p_1 = 1bar$.
- Le rapport de compression $r_c = 8$
- ullet La température à la sortie de la chambre de combustion ${m T}_4=750^o{m C}$.
- Les rendements du compresseur et de la turboine $\eta_c=0.85$ et $\eta_t=0.88$, respectivement
- Le débit massique d'air $\dot{m} = 10kg/s$.

Calculez

- Les sommets (T, P) du cycle
- La pusiisance nette

Compresseur C: À partir de la table (T, h, p_r) , pour $T_1 = 273K$, on trouve:

$$h_1 = 273.11 \ kJ/kg \quad p_{r1} = 0.9980$$

Sortie du compresseur: 3

$$oldsymbol{p}_2 = oldsymbol{p}_1 imes oldsymbol{r}_c = oldsymbol{p}_2 = 8 \, oldsymbol{bar}$$

$$m{p}_{r2} = m{p}_{r1} rac{m{p}_2}{m{p}_1} = 7.9838 = \boxed{m{p}_{r2} = 7.9838}$$

$$p_{r2} = 7.9838 \rightarrow h_2 s = 49.58 \ kJ/kg$$

$$ar{oldsymbol{w}_{cs}}=oldsymbol{h}_2oldsymbol{s}-oldsymbol{h}_1=oldsymbol{ar{w}_{cs}}=222.47~oldsymbol{kJ/kmol}$$

$$oldsymbol{w}_{cr} = rac{oldsymbol{h}_{2s} - oldsymbol{h}_{1}}{oldsymbol{\eta}_{c}} = oldsymbol{ar{w}}_{cs} = 261.47 \,\, oldsymbol{kJ/kmol}$$

Turbine T

$$egin{array}{lll} m{T}_{3r} &= 1023 &
ightarrow & m{Table}
ightarrow \ m{h}_{3r} & = & ---- & m{k}m{J}/m{k}m{g} \ m{P}_{r3} & = & 132.45 \end{array}$$

$$egin{aligned} oldsymbol{p}_{r4} &= oldsymbol{p} oldsymbol{r}_3 rac{oldsymbol{p}_4}{oldsymbol{P}_3} \ oldsymbol{p}_4 &= oldsymbol{p} = 1 \ oldsymbol{bar} \end{aligned}$$

$$p_{r4} = 16.556 \rightarrow h_{4s} =$$

$$w_{ts} = h_{3r} - h_{4s} = 462.09 \ kJ/kg$$

$$w_{tr} = \eta_t \times w_{ts} = 406.64 \ kJ/kg$$

$$\dot{\boldsymbol{W}} = \dot{\boldsymbol{m}} \times \boldsymbol{w}_{tr} = 4066 \boldsymbol{kW}$$

Table B.1. Properties of Dry Air at 1 atm (SI)

Temp.	\overline{C}_{p}°	\bar{h}°	s°		Temp.	\overline{C}_p°	\bar{h}°	s°	
K	kJ/kmol K	kJ/kmol	kJ/kmol K	Pr	K	kJ/kmol K	kJ/kmol	kJ/kmol K	Pr
210.	29.145	-2683.3	183.799	0.3987	710.	31.197	12216.4	219.854	30.475
220.	29.125	-2391.9	185.155	0.4693	720.	31.267	12528.7	220.291	32.119
230.	29.110	-2100.7	186.449	0.5483	730.	31.337	12841.8	220.723	33.831
240.	29.099	-1809.7	187.688	0.6364	740.	31.407	13155.5	221.150	35.613
250.	29.091	-1518.7	188.875	0.7342	750.	31.477	13469.9	221.572	37.468
260.	29.087	-1227.9	190.016	0.8421	760.	31.547	13785.0	221.989	39.397
270.	29.086	-937.0	191.114	0.9610	770.	31.616	14100.8	222.402	41.402
280.	29.089	-646.1	192.172	1.0914	780.	31.685	14417.4	222.810	43.487
290.	29.095	-355.2	193.193	1.2340	790.	31.754	14734.5	223.214	45.652
300.	29.104	-64.2	194.179	1.3894	800.	31.822	15052.4	223.614	47.902
310.	29.117	226.9	195.134	1.5585	810.	31.890	15371.0	224.010	50.24
320.	29.132	518.1	196.058	1.7418	820.	31.958	15690.2	224.402	52.66
330.	29.151	809.6	196.955	1.9401	830.	32.025	16010.1	224.789	55.17
340.	29.172	1101.2	197.826	2.154	840.	32.091	16330.7	225.173	57.78
350.	29.196	1393.0	198.672	2.385	850.	32.157	16652.0	225.553	60.49
360.	29.223	1685.1	199.495	2.633	860.	32.222	16973.9	225.930	63.29
370.	29.252	1977.5	200.296	2.899	870.	32.287	17296.4	226.303	66.19
380.	29.284	2270.2	201.076	3.185	880.	32.350	17619.6	226.672	69.20
390.	29.318	2563.2	201.837	3.490	890.	32.413	17943.4	227.038	72.31
400.	29.354	2856.5	202.580	3.816	900.	32.475	18267.9	227.401	75.53
410.	29.393	3150.3	203.305	4.164	910.	32.537	18592.9	227.760	78.87
420.	29.434	3444.4	204.014	4.535	920.	32.597	18918.6	228.116	82.32
430.	29.477	3738.9	204.707	4.929	930.	32.657	19244.9	228.468	85.88
440.	29.522	4033.9	205.385	5.348	940.	32.715	19571.7	228.818	89.57
450.	29.568	4329.4	206.049	5.792	950.	32.773	19899.2	229.165	93.38
460.	29.617	4625.3	206.700	6.264	960.	32.829	20227.2	229.508	97.32
470.	29.667	4921.7	207.337	6.763	970.	32.885	20555.7	229.849	101.39
480.	29.719	5218.7	207.962	7.291	980.	32.939	20884.9	230.186	105.59
490.	29.772	5516.1	208.576	7.849	990.	32.993	21214.5	230.521	109.93
500.	29.827	5814.1	209.178	8.439	1000.	33.045	21544.7	230.853	114.41
510.	29.883	6112.7	209.769	9.060	1010.	33.095	21875.4	231.182	119.02
520.	29.941	6411.8	210.350	9.716	1020.	33.145	22206.6	231.508	123.79
530.	30.000	6711.5	210.921	10.407	1030.	33.194	22538.3	231.832	128.70
540.	30.060	7011.8	211.482	11.133	1040.	33.243	22870.5	232.153	133.77
550.	30.121	7312.7	212.034	11.898	1050.	33.291	23203.1	232.471	138.99
560.	30.184	7614.2	212.577	12.701	1060.	33.339	23536.3	232.787	144.37
570.	30.247	7916.4	213.112	13.545	1070.	33.386	23869.9	233.100	149.91
580.	30.311	8219.2	213.639	14.431	1080.	33.433	24204.0	233.411	155.62
590.	30.376	8522.6	214.157	15.360	1090.	33.479	24538.6	233.719	161.50
600.	30.442	8826.7	214.669	16.334	1100.	33.525	24873.6	234.025	167.55
610.	30.508	9131.4	215.172	17.354	1110.	33.571	25209.1	234.329	173.79
620.	30.575	9436.8	215.669	18.422	1120.	33.616	25545.0	234.630	180.20
630.	30.643	9742.9	216.159	19.540	1130.	33.661	25881.4	234.929	186.80
640.	30.711	10049.7	216.642	20.709	1140.	33.705	26218.2	235.226	193.59
650.	30.780	10357.2	217.118	21.931	1150.	33.749	26555.5	235.520	200.6
660.	30.849	10665.3	217.589	23.207	1160.	33.792	26893.2	235.813	207.7
670.	30.918	10974.1	218.053	24.540	1170.	33.835	27231.3	236.103	215.1
680.	30.988	11283.7	218.512	25.932	1180.	33.878	27569.9	236.391	222.7
690.	31.057	11593.9	218.965	27.384	1190.	33.920	27908.9	236.677	230.5
700.	31.127	11904.8	219.412	28.897	1200.	33.962	28248.3	236.961	238.5

- Typeset by FoilTEX

Table B.1 (continued)

	Temp.	\overline{C}_p°	\bar{h}°	<u>s</u> °		Temp.	\overline{C}_p°	\bar{h}°	s°	
	K	kJ/kmol K	kJ/kmol	kJ/kmol K	Pr	K	kJ/kmol K	kJ/kmol	kJ/kmol K	Pr
	1010	24.004	20500.1	227.242	246.7	1710	25 (25	46020.2	240 202	1051 (
	1210.	34.004	28588.1	237.243	246.7	1710.	35.625	46029.2	249.292	1051.0
	1220.	34.044	28928.4	237.523	255.2	1720.	35.650	46385.6	249.500	1077.6
	1230.	34.085	29269.0	237.801	263.9	1730.	35.674	46742.2	249.706	1104.7
	1240.	34.125	29610.1	238.077	272.8	1740.	35.699	47099.1	249.912	1132.4
	1250.	34.165	29951.5	238.352	281.9	1750.	35.723	47456.2	250.117	1160.6
	1260.	34.205	30293.4	238.624	291.3	1760.	35.746	47813.6	250.320	1189.4
	1270.	34.244	30635.6	238.895	301.0	1770.	35.770	48171.1	250.523	1218.7
	1280.	34.282	30978.3	239.163	310.9	1780.	35.793	48528.9	250.724	1248.
	1290.	34.320	31321.3	239.430	321.0	1790.	35.816	48887.0	250.925	1279.
	1300.	34.358	31664.7	239.695	331.4	1800.	35.839	49245.3	251.125	1310.
	1210	24.206	32008.4	220.050	342.1	1810.	35.862	49603.8	251.323	1341.
	1310.	34.396		239.959						
	1320.	34.433	32352.6	240.221	353.0	1820.	35.884	49962.5	251.521	1374.
	1330.	34.470	32697.1	240.481	364.2	1830.	35.906	50321.5	251.718	1407.
	1340.	34.506	33042.0	240.739	375.7	1840.	35.928	50680.6	251.913	1440.
	1350.	34.542	33387.2	240.996	387.5	1850.	35.950	51040.0	252.108	1474.
	1360.	34.578	33732.8	241.251	399.6	1860.	35.971	51399.6	252.302	1509.
	1370.	34.613	34078.8	241.504	411.9	1870.	35.992	51759.4	252.495	1545.
	1380.	34.648	34425.1	241.756	424.6	1880.	36.013	52119.5	252.687	1581.
	1390.	34.683	34771.7	242.006	437.6	1890.	36.034	52479.7	252.878	1617.
	1400.	34.717	35118.8	242.255	450.9	1900.	36.054	52840.1	253.068	1655.
	1410.	34.751	35466.1	242.502	464.5	1910.	36.075	53200.8	253.258	1693.
	1420.	34.785	35813.8	242.748	478.4	1920.	36.095	53561.6	253.446	1732.
				242.748	492.7	1930.	36.115	53922.7	253.634	1771.
	1430.	34.818	36161.8							
	1440. 1450.	34.851 34.884	36510.1 36858.8	243.235 243.476	507.3 522.2	1940. 1950.	36.135 36.154	54283.9 54645.4	253.820 254.006	1811. 1852
									No. and the second	
	1460.	34.916	37207.8	243.716	537.5	1960.	36.174	55007.0	254.191	1894.
3.77	1470.	34.948	37557.1	243.955	553.1	1970.	36.193	55368.8	254.375	1937
	1480.	34.980	37906.8	244.192	569.1	1980.	36.212	55730.9	254.558	1980.
	1490.	35.011	38256.7	244.427	585.5	1990.	36.230	56093.1	254.741	2024
	1500.	35.042	38607.0	244.662	602.2	2000.	36.249	56455.5	254.923	2068
	1510.	35.073	38957.6	244.894	619.3	2010.	36.267	56818.1	255.103	2114
	1520.	35.103	39308.4	245.126	636.8	2020.	36.285	57180.8	255.283	2160
	1530.	35.133	39659.6	245.356	654.7	2030.	36.303	57543.8	255,463	2207
				245.585	673.0	2040.	36.321	57906.9	255.641	2255
	1540. 1550.	35.163 35.192	40011.1	245.813	691.7	2050.	36.339	58270.2	255.819	2304
		25 222	40715.0	246 020	710.0	2060	26 256	59622.7	255 006	2252
	1560.	35.222	40715.0	246.039	710.8	2060.	36.356	58633.7	255.996	2353
	1570.	35.250	41067.3	246.265	730.3	2070.	36.374	58997.3	256.172	2404
	1580.	35.279	41420.0	246.489	750.2	2080.	36.391	59361.1	256.347	2455
	1590.	35.307	41772.9	246.711	770.6	2090.	36.408	59725.1	256.522	2507
	1600.	35.335	42126.1	246.933	791.4	2100.	36.425	60089.3	256.696	2560
	1610.	35.363	42479.6	247.153	812.6	2110.	36.441	60453.6	256.869	2614
	1620.	35.391	42833.4	247.372	834.3	2120.	36.458	60818.1	257.041	2669
_ =	1630. selt ₆₄ 0y	Foil TEX -	43187.4	247.590	856.5	2130.	36.474	61182.8	257.213	2724
і уре		LOHª FAR -	43541.7	247.807	879.1	2140.	36.490	61547.6	257.3831	1
	1650.	35.471	43896.3	248.022	902.2	2150.	36.506	61912.6	257.554	2838
	1660.	35.497	44251.1	248.236	925.7	2160.	36.522	62277.7	257.723	2897
	1670.	35.524	44606.3	248.450	949.8	2170.	36.537	62643.0	257.892	2956
	1680.	35.549	44961.6	248.662	974.3	2180.	36.553	63008.4	258.060	3017
	1690.	35.575	45317.2	248.873	999.4	2190.	36.568	63374.1	258.227	3078
	1700.	35.600	45673.1	249.083	1024.9	2200.	36.584	63739.8	258.394	3140
	1700.	55.000	75075.1	217.003	1027.7	2200.	20.001	00,07.0	20107	

Table B.1 (continued)

Temp.	¯ _C ° kJ/kmol K	h° kJ/kmol	s° kJ/kmol K	Pr	Temp.	_C° kJ/kmol K	h° kJ/kmol	s° kJ/kmol K	Pr
2210.	36.599	64105.7	258.560	3204.1	2460.	36.933	73298.7	262.500	5147.
2220.	36.613	64471.8	258.725	3268.4	2470.	36.944	73668.1	262.650	5240.
2230.	36.628	64838.0	258.890	3333.8	2480.	36.956	74037.6	262.799	5335.
2240.	36.643	65204.4	259.053	3400.2	2490.	36.968	74407.2	262.948	5432.
2250.	36.657	65570.9	259.217	3467.6	2500.	36.979	74777.0	263.096	5529.
2260.	36.672	65937.5	259.379	3536.1	2510.	36.991	75146.8	263.244	5628.
2270.	36.686	66304.3	259.541	3605.6	2520.	37.002	75516.8	263.391	5729.
2280.	36.700	66671.2	259.703	3676.2	2530.	37.014	75886.9	263.538	5831.
2290.	36.714	67038.3	259.863	3748.0	2540.	37.025	76257.1	263.684	5934
2300.	36.728	67405.5	260.023	3820.8	2550.	37.036	76627.4	263.829	6039.
2310.	36.741	67772.8	260.183	3894.7	2560.	37.047	76997.8	263.974	6145.
2320.	36.755	68140.3	260.341	3969.8	2570.	37.058	77368.3	264.119	6253
2330.	36.768	68507.9	260.499	4046.	2580.	37.069	77738.9	264.262	6362.
2340.	36.782	68875.7	260.657	4123.	2590.	37.079	78109.7	264.406	6473
2350.	36.795	69243.6	260.814	4202.	2600.	37.090	78480.5	264.549	6585
2360.	36.808	69611.6	260.970	4282.	2610.	37.101	78851.5	264,691	6699
2370.	36.821	69979.8	261.126	4363.	2620.	37.111	79222.5	264.833	6814
2380.	36.834	70348.0	261.281	4445.	2630.	37.122	79593.7	264.974	6931.
2390.	36.847	70716.4	261.435	4528.	2640.	37.132	79965.0	265.115	7049.
2400.	36.859	71085.0	261.589	4613.	2650.	37.142	80336.4	265.256	7169.
2410.	36.872	71453.6	261.742	4698.					
2420.	36.884	71822.4	261.895	4786.			1 5		
2430.	36.896	72191.3	262.047	4874.					
2440.	36.909	72560.3	262.199	4964.					
2450.	36.921	72929.5	262.350	5055.					

TABLE A-22 Idea Gas Properties of Air
T(K), h and u(KJ/kg), s°(kJ/kg·K)

	il'.	p.	11	v,	20	I	h	p,	n	0,	2,,
00	200 199.9年 0.3363 142.56	0.3363	142.56	1707.	1.29559	450	451.80	5.775	322.62	223.6	2.11161
10	209.97	0.3987	149.69	1512.	1.34444	460	462.02	6.245	329.97	211.4	2.13407
20	219.97	0.4690	156.82	1346.	1.39105	470	472.24	6.742	337.32	200.1	2.15604
30	230.02	0.5477	164.00	1205.	1.43557	480	482.49	7.268	344.70	189.5	2.17760
40	240.02	0.6355	171.13	1084.	1.47824	490	492.74	7.824	352.08	179.7	2.19876
250	250.05	0.7329	178.28	979.	1.51917	200	503.02	8.411	359.49	170.6	2.21952
09	260.09	0.8405	185.45	887.8	1.55848	510	513.32	9.031	366.92	162.1	2.23993
0/	270.11	0.9590	192.60	808.0	1.59634	520	523.63	9.684	374.36	154.1	2.25997
30	280.13	1.0889	199.75	738.0	1.63279	530	533.98	10.37	381.84	146.7	2.27967
85	285.14	1.1584	203.33	706.1	1.65055	540 °	544.35	11.10	389.34	139.7	2.29906
290	290.16	1.2311		676.1	1.66802	550	554.74	11.86	396.86	133.1	2.31809
95	295.17	1.3068		647.9	1.68515	260	565.17	12.66	404.42	127.0	2.33685
00	300.19	1.3860		621.2	1.70203	570	575.59	13.50	411.97	121.2	2.35531
05	305.22	1.4686		596.0	1.71865	580	586.04	14.38	419.55	115.7	2.37348
01	310.24	1.5546	221.25	572.3	1.73498	280	596.52	15.31	427.15	110.6	2.39140
315	315.27	1.6442	224.85	549.8	1.75106	009	607.02	16.28	434.78	105.8	2.40902
50	320.29	1.7375	228.42	528.6	1.76690	610	617.53	17.30	442.42	101.2	2.42644
52	325.31	1.8345	232.02	508.4	1.78249	620	628.07	18.36	450.09	96.92	2.44356
30	330.34	1.9352	235.61	489.4	1.79783	630	638.63	19.84	457.78	92.84	2.46048
0	340.42	2.149	242.82	454.1	1.82790	640	649.22	20.64	465.50	88.99	2.47716
350	350.49	2.379	250.02	422.2	1.85708	650	659.84	21.86	473.25	85.34	2.49364
00	360.58	2.626	257.24	393.4	1.88543	099	670.47	23.13	481.01	81.89	2.50985
0/	370.67	2.892	264.46	367.2	1.91313	029	681.14	24.46	488.81	78.61	2.52589
30	380.77	3.176	271.69	343.4	1.94001	089	691.82	25.85	496.62	75.50	2.54175
90	390.88	3.481	278.93	321.5	1.96633	069	702.52	27.29	504.45	72.56	2.55731
400	400.98	3.806	286.16	301.6	1.99194	200	713.27	28.80	512.33	92.69	2.57277
01	42	4.153	293.43	283.3	2.01699	710	724.04	30.38	520.23	67.07	2.58810
420	421.26	4.522	300.69	266.6	2.04142	720	734.82	32.02	528.14	64.53	2.60319
30	431.43	4.915	307.99	251.1	2.06533	730	745.62	33.72	536.07	62.13	2.61803
40	441 61	5 332	315 30	236.8	2 08870	740	756 44	35 50	544 02	50 82	7 62380

TABLE A-22 (Continued)

T	h	p,	n	υ,	20	T	h	Pr	n	0,	So
750	767.29	37.35	551.99	57.63	2.64737	1300	1395.97	330.9	1022.82	11.275	3.27345
160	778.18	39.27	560.01	55.54	2.66176	1320	1419.76	352.5	1040.88	10.747	3.29160
770	789.11	41.31	568.07	53.39	2.67595	1340	1443.60	375.3	1058.94	10.247	3.30959
780	800.03	43.35	576.12	51.64	2.69013	1360	1467.49	399.1	1077.10	9.780	3.32724
790	810.99	45.55	584.21	49.86	2.70400	1380	1491.44	424.2	1095.26	9.337	3.34474
800	821.95	47.75	592.30	48.08	2.71787	1400	1515.42	450.5	1113.52	8.919	3.36200
820	843.98	52.59	608.59	44.84	2.74504	1420	1539.44	478.0	1131.77	8.526	3.37901
840	80.998	57.60	624.95	41.85	2,77170	1440	1563.51	506.9	1150.13	8.153	3.39586
860	888.27	63.09	641.40	39.12	2.79783	1460	1587.63	537.1	1168.49	7.801	3.41247
880	910.56	86.89	657.95	36.61	2.82344	1480	1611.79	568.8	1186.95	7.468	3.42892
006	932.93	75.29	674.58	34.31	2.84856	1500	1635.97	601.9	1205.41	7.152	3.44516
920	955.38	82.05	691.28	32.18	2.87324	1520	1660.23	636.5	1223.87	6.854	3.46120
940	977.92	89.28	708.08	30.22	2.89748	1540	1684.51	672.8	1242.43	6.569	3.47712
096	1000.55	97.00	725.02	28.40	2.92128	1560	1708.82	710.5	1260.99	6.301	3.49276
086	1023.25	105.2	741.98	26.73	2.94468	1580	1733.17	750.0	1279.65	6.046	3.50829
0001	1046.04	114.0	758.94	25.17	2.96770	1600	1757.57	791.2	1298.30	5.804	3.52364
1020	1068.89	123.4	776.10	23.72	2.99034	1620	1782.00	834.1	1316.96	5.574	3.53879
1040	1091.85	133.3	793.36	22.39	3.01260	1640	1806.46	878.9	1335.72	5.355	3.55381
1060	1114.86	143.9	810.62	21.14	3.03449	1660	1830.96	925.6	1354.48	5.147	3.56867
1080	1137.89	155.2	827.88	19.98	3.05608	1680	1855.50	974.2	1373.24	4.949	3.58335
1100	1161.07	167.1	845.33	18.896	3.07732	1700	1880.1	1025	1392.7	4.761	3.5979
1120	1184.28	179.7	862.79	17.886		1750	1941.6	1161	1439.8	4.328	3.6336
1140	1207.57	193.1	880.35	16.946	3.11883	1800	2003.3	1310	1487.2	3.944	3.6684
1160	1230.92	207.2	897.91	16.064	3.13916	1850	2065.3	1475	1534.9	3.601	3.7023
1180	1254.34	222.2	915.57	15.241		1900	2127.4	1655	1582.6	3.295	3.7354
1200	1277.79	238.0	933.33	14.470	3.17888	1950	2189.7	1852	1630.6	3:022	3.7677
1220	1301.31	254.7	951.09	13.747		2000	2252.1	2068	1678.7	2.776	3.7994
1240	1324.93	272.3	968.95	13.069		2050	2314.6	2303	1726.8	2.555	3.8303
1260	1348.55	290.8	06.986	12.435		2100	2377.4	2559	1775.3	2.356	3.8605
1280	1372.24	310.4	1004.76	11.835	3.25510	2150	2440.3	2837	1823.8	2.175	3.8901
						2200	2503.2	3138	1872.4	2.012	3.9191
						0		* * * * *		1 70 1	20174

Source: Adapted from K. Wark, Thermodynamics, 4th ed., McGraw-Hill, New York, 1983, as based on J. H. Keenan and J. Kaye, Gas Tables, Wiley, New York, 1945.